Irrelevant solvable deformations

 with boundaries and defectsYunfeng Jiang｜江云峰
Southeast University
＠APCPT，Pohang，Korea
2021－09－28

Based on the work

Y. Jiang, F. Loebbert, D. Zhong, 2109.13180

Initiated from the previous workshop

1. Motivations \& Reviews

Motivation

TTbar and other irrelevant solvable deformation have been intensely studied in recent years
\square
These studies lead to a deeper understanding about quantum field theory and integrable models

Motivation

TTbar and other irrelevant solvable deformation have been intensely studied in recent years

These studies lead to a deeper understanding about quantum field theory and integrable models

QFTs and integrable systems can have extended objects such as boundaries and

Question How does TTbar and other deformations affect such structures ?

Goal Investigate this question in Integrable QFT

Integrable QFT

QFT described by an action

$$
S=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} y \mathcal{L}
$$

Quantize it, and compute observables (perturbatively)

Integrable QFT

QFT described by an action

$$
S=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} y \mathcal{L}
$$

Quantize it, and compute observables (perturbatively)

The bootstrap approach

- S-matrix encodes dynamical info
- Find S-matrix non-perturbatively
- Compute other observables

[^0]
S-matrix bootstrap

The bootstrap axioms

S-matrix bootstrap

The bootstrap axioms

- The importance of CDD factor become more clear now
- Spectrum can be found by Bethe ansatz and TBA
- Correlators can be found by form factor bootstrap

Boundary IQFT

Lagrangian description

$$
S_{\mathrm{B}}=\int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{\infty} \mathrm{d} x \mathcal{L}+\int_{-\infty}^{\infty} \mathrm{d} y \mathcal{L}_{\mathrm{B}}
$$

Boundary IQFT

Lagrangian description

$$
S_{\mathrm{B}}=\int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{\infty} \mathrm{d} x \mathcal{L}+\int_{-\infty}^{\infty} \mathrm{d} y \mathcal{L}_{\mathrm{B}}
$$

Boundary in space direction

$$
{ }_{\mathrm{B}}\langle 0| \mathcal{O}_{1} \cdots \mathcal{O}_{n}|0\rangle_{\mathrm{B}}
$$

Boundary IQFT

Lagrangian description

$$
S_{\mathrm{B}}=\int_{-\infty}^{\infty} \mathrm{d} y \int_{0}^{\infty} \mathrm{d} x \mathcal{L}+\int_{-\infty}^{\infty} \mathrm{d} y \mathcal{L}_{\mathrm{B}}
$$

Boundary in space direction

$$
{ }_{\mathrm{B}}\langle 0| \mathcal{O}_{1} \cdots \mathcal{O}_{n}|0\rangle_{\mathrm{B}}
$$

Boundary in time direction

$$
\langle 0| \mathcal{O}_{1} \cdots \mathcal{O}_{n}|B\rangle
$$

Boundary IQFT

Bulk integrability

There exist infinitely many conserved currents

$$
\partial_{\bar{z}} T_{s+1}=\partial_{z} \Theta_{s-1} \quad \partial_{z} \bar{T}_{s+1}=\partial_{\bar{z}} \bar{\Theta}_{s-1}
$$

Boundary IQFT

Bulk integrability

There exist infinitely many conserved currents

$$
\partial_{\bar{z}} T_{s+1}=\partial_{z} \Theta_{s-1} \quad \partial_{z} \bar{T}_{s+1}=\partial_{\bar{z}} \bar{\Theta}_{s-1}
$$

Integrable boundary

Boundary conditions which preserves integrability

$$
\left.\left[T_{s+1}+\bar{\Theta}_{s-1}-\bar{T}_{s+1}-\Theta_{s-1}\right]\right|_{x=0}=\frac{\mathrm{d}}{\mathrm{~d} y} \theta_{s}(y)
$$

Preserves infinitely many conserved charges

Boundary IQFT

Bootstrap description

- Scattering is purely elastic
- Even charges conserved
- Described by boundary S-matrix

Boundary IQFT

Bootstrap description

- Scattering is purely elastic
- Even charges conserved
- Described by boundary S-matrix

Boundary S-matrices can be determined by bootstrap axioms

Boundary IQFT

Bootstrap description

- Scattering is purely elastic
- Even charges conserved
- Described by boundary S-matrix

Boundary S-matrices can be determined by bootstrap axioms

Boundary YBE

Boundary IQFT

Bootstrap description

- Scattering is purely elastic
- Even charges conserved
- Described by boundary S-matrix

Boundary S-matrices can be determined by bootstrap axioms

Boundary Unitarity

Boundary IQFT

Bootstrap description

- Scattering is purely elastic
- Even charges conserved
- Boundary S-matrix

Boundary S-matrices can be determined by bootstrap axioms

Boundary Crossing

Boundary IQFT

Bootstrap description

- Scattering is purely elastic
- Even charges conserved
- Boundary S-matrix

- Find boundary S-matrix by solving bootstrap axioms
- Compute other observables using integrability
- There are new observables, such as boundary free energy and exact g-function, boundary 1 pt function, ...

Defect IQFT

Bootstrap description

- Scattering can be transmissive and reflective
- Preserves integrability
- Transmission and reflection amplitudes

Defect IQFT

Bootstrap description

[Delfino, Mussardo and Simonetti 1994]

- Scattering can be transmissive and reflective
- Preserves integrability
- Transmission and reflection amplitudes

Topological vs non-topological

A purely transmissive is called topological, otherwise it is called nontopological

Defect IQFT

Bootstrap description

- Scattering can be transmissive and reflective
- Preserves integrability
- Transmission and reflection amplitudes

Topological vs non-topological

A purely transmissive is called topological, otherwise it is called nontopological
[Castro-Alvaredo, Fring and Gohmann 2002]

Only free theories can have integrable non-topological defects
2. Solvable deformations

Deforming BIQFT

Even and odd charges

Integrability

$$
\begin{aligned}
& \partial_{\bar{z}} T_{s+1}=\partial_{z} \Theta_{s-1} \\
& \partial_{z} \bar{T}_{s+1}=\partial_{\bar{z}} \bar{\Theta}_{s-1}
\end{aligned}
$$

Conserved charges

$$
I_{s}=\int_{\mathcal{C}}\left(T_{s+1} \mathrm{~d} z+\Theta_{s-1} \mathrm{~d} \bar{z}\right) \quad \bar{I}_{s}=\int_{\mathcal{C}}\left(\bar{T}_{s+1} \mathrm{~d} \bar{z}+\bar{\Theta}_{s-1} \mathrm{~d} z\right)
$$

Define

$$
H_{s}=I_{s}+\bar{I}_{s} \quad P_{s}=-i\left(I_{s}-\bar{I}_{s}\right)
$$

The H -type higher charges are preserved by the boundary

Deforming BIQFT

Bilinear deformations

Two currents

$$
J_{H_{s}}^{\mu}=\left(\mathcal{H}_{s}, \mathcal{J}_{\mathcal{H}_{s}}\right) \quad J_{P_{r}}^{\mu}=\left(\mathcal{P}_{r}, \mathcal{J}_{\mathcal{P}_{r}}\right)
$$

Bilinear deformation

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} H_{\lambda}=\int_{s_{\mathrm{L}}}^{s_{\mathrm{R}}} \mathcal{O}_{r s}(x) \mathrm{d} x \quad \mathcal{O}_{r s}=-\epsilon_{\mu \nu} J_{\mathcal{P}_{r}}^{\mu} J_{\mathcal{H}_{s}}^{\nu}
$$

$r=s=1$ is the TTbar deformation

Deforming BIQFT

Bilinear deformations

Two currents

$$
J_{H_{s}}^{\mu}=\left(\mathcal{H}_{s}, \mathcal{J}_{\mathcal{H}_{s}}\right) \quad J_{P_{r}}^{\mu}=\left(\mathcal{P}_{r}, \mathcal{J}_{\mathcal{P}_{r}}\right)
$$

Bilinear deformation

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} H_{\lambda}=\int_{s_{\mathrm{L}}}^{s_{\mathrm{R}}} \mathcal{O}_{r s}(x) \mathrm{d} x \quad \mathcal{O}_{r s}=-\epsilon_{\mu \nu} J_{\mathcal{P}_{r}}^{\mu} J_{\mathcal{H}_{s}}^{\nu}
$$

$r=s=1$ is the TTbar deformation

Bilocal deformations

[Bargheer, Beisert and Loebbert 2012]

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} H_{\lambda}=\left[X_{r s}, H_{\lambda}\right] \quad X_{r s}=\int_{x_{1}<x_{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathcal{P}_{r}\left(x_{1}\right) \mathcal{H}_{s}\left(x_{2}\right)
$$

Deforming BIQFT

Relation between two deformations

$$
\left[X_{r s}, H\right]=\int_{s_{\mathrm{L}}}^{s_{\mathrm{R}}} \mathcal{O}_{r s}(x) \mathrm{d} x-\mathcal{J}_{\mathcal{P}_{r}}\left(s_{\mathrm{L}}\right) H_{s}+P_{r} \mathcal{J}_{\mathcal{H}_{s}}\left(s_{\mathrm{R}}\right)
$$

Half infinite line

$$
\frac{\mathrm{d} H_{\lambda}}{\mathrm{d} \lambda}=\left[X_{r s}, H\right]=\int_{-\infty}^{s_{\mathrm{R}}} \mathcal{O}_{r s}(x) \mathrm{d} x
$$

Deforming BIQFT

Relation between two deformations

$$
\left[X_{r s}, H\right]=\int_{s_{\mathrm{L}}}^{s_{\mathrm{R}}} \mathcal{O}_{r s}(x) \mathrm{d} x-\mathcal{J}_{\mathcal{P}_{r}}\left(s_{\mathrm{L}}\right) H_{s}+P_{r} \mathcal{J}_{\mathcal{H}_{s}}\left(s_{\mathrm{R}}\right)
$$

Half infinite line

$$
\frac{\mathrm{d} H_{\lambda}}{\mathrm{d} \lambda}=\left[X_{r s}, H\right]=\int_{-\infty}^{s_{\mathrm{R}}} \mathcal{O}_{r s}(x) \mathrm{d} x
$$

- For boundary case, order of two charges is important
- Use bi-local formulation and find deformed S-matrices

S-matrix bulk

Asymptotic 2-particle S-matrix

$$
\begin{aligned}
& \left|u<u^{\prime}\right\rangle \quad\left|u^{\prime}<u\right\rangle \quad \text { local contribution }
\end{aligned}
$$

S-matrix bulk

Asymptotic 2-particle S-matrix

$$
\begin{aligned}
& \text { does not affect S-matrix }
\end{aligned}
$$

S-matrix bulk

Asymptotic 2-particle S-matrix

$$
\begin{aligned}
& \text { does not affect S-matrix } \\
& \left|u, u^{\prime}\right\rangle \approx a\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
\end{aligned}
$$

$$
S\left(u, u^{\prime}\right)=\frac{a\left(u^{\prime}, u\right)}{a\left(u, u^{\prime}\right)}
$$

S-matrix bulk

Asymptotic 2-particle S-matrix

$$
\begin{aligned}
& \text { does not affect S-matrix } \\
& \left|u, u^{\prime}\right\rangle \approx a\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
\end{aligned}
$$

$$
S\left(u, u^{\prime}\right)=\frac{a\left(u^{\prime}, u\right)}{a\left(u, u^{\prime}\right)}
$$

Deformed asymptotic state

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

S-matrix bulk

Deformed S-matrix

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

S-matrix bulk

Deformed S-matrix

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

Starting from the eigenvalue equation

$$
H_{\lambda}\left|u, u^{\prime}\right\rangle_{\lambda}=\left[h(u)+h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}
$$

S-matrix bulk

Deformed S-matrix

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

Starting from the eigenvalue equation

$$
H_{\lambda}\left|u, u^{\prime}\right\rangle_{\lambda}=\left[h(u)+h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}
$$

Taking derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\left[H_{\lambda}-h(u)-h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}\right)=0
$$

S-matrix bulk

Deformed S-matrix

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

Starting from the eigenvalue equation

$$
H_{\lambda}\left|u, u^{\prime}\right\rangle_{\lambda}=\left[h(u)+h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}
$$

Taking derivative

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\left[H_{\lambda}-h(u)-h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}\right)=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} \lambda} H_{\lambda}=\left[X_{r s}, H_{\lambda}\right]
\end{gathered}
$$

S-matrix bulk

Deformed S-matrix

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

Starting from the eigenvalue equation

$$
H_{\lambda}\left|u, u^{\prime}\right\rangle_{\lambda}=\left[h(u)+h\left(u^{\prime}\right)\right]\left|u, u^{\prime \prime}\right\rangle_{\lambda}
$$

Taking derivative

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\left[H_{\lambda}-h(u)-h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}\right)=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} \lambda} H_{\lambda}=\left[X_{r s}, H_{\lambda}\right]
\end{gathered}
$$

S-matrix bulk

Deformed S-matrix

$$
\left|u, u^{\prime}\right\rangle_{\lambda} \approx a_{\lambda}\left(u, u^{\prime}\right)\left|u<u^{\prime}\right\rangle+a_{\lambda}\left(u^{\prime}, u\right)\left|u^{\prime}<u\right\rangle
$$

Starting from the eigenvalue equation

$$
H_{\lambda}\left|u, u^{\prime}\right\rangle_{\lambda}=\left[h(u)+h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}
$$

Taking derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\left[H_{\lambda}-h(u)-h\left(u^{\prime}\right)\right]\left|u, u^{\prime}\right\rangle_{\lambda}\right)=0
$$

Find that

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

S-matrix bulk

Deformed S-matrix

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

S-matrix bulk

Deformed S-matrix

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

Using the fact

$$
X_{r s}\left|u<u^{\prime}\right\rangle=\left[i p_{r}(u) h_{s}\left(u^{\prime}\right)+f_{r s}(u)+f_{r s}\left(u^{\prime}\right)\right]\left|u<u^{\prime}\right\rangle
$$

S-matrix bulk

Deformed S-matrix

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

Using the fact

$$
\begin{aligned}
& X_{r s}\left|u<u^{\prime}\right\rangle=\left[i p_{r}(u) h_{s}\left(u^{\prime}\right)+f_{r s}(u)+f_{r s}\left(u^{\prime}\right)\right]\left|u<u^{\prime}\right\rangle \\
& X_{r s}=\int_{x_{1}<x_{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathcal{P}_{r}\left(x_{1}\right) \mathcal{H}_{s}\left(x_{2}\right)
\end{aligned}
$$

S-matrix bulk

Deformed S-matrix

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

Using the fact

$$
\begin{aligned}
& X_{r s}\left|u<u^{\prime}\right\rangle=\left[i p_{r}(u) h_{s}\left(u^{\prime}\right)+f_{r s}(u)+f_{r s}\left(u^{\prime}\right)\right]\left|u<u^{\prime}\right\rangle \\
& X_{r s}=\int_{x_{1}<x_{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathcal{P}_{r}\left(x_{1}\right) \mathcal{H}_{s}\left(x_{2}\right) \\
& \text { on the same particle }
\end{aligned}
$$

S-matrix bulk

Deformed S-matrix

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

Using the fact

$$
\begin{aligned}
& X_{r s}\left|u<u^{\prime}\right\rangle=\left[i p_{r}(u) h_{s}\left(u^{\prime}\right)+f_{r s}(u)+f_{r s}\left(u^{\prime}\right)\right]\left|u<u^{\prime}\right\rangle \\
& X_{r s}\left|u^{\prime}<u\right\rangle=\left[i p_{r}\left(u^{\prime}\right) h_{s}(u)+f_{r s}\left(u^{\prime}\right)+f_{r s}(u)\right]\left|u^{\prime}<u\right\rangle
\end{aligned}
$$

S-matrix bulk

Deformed S-matrix

$$
X_{r s}\left|u, u^{\prime}\right\rangle_{\lambda}=\frac{\mathrm{d} a_{\lambda}\left(u, u^{\prime}\right)}{\mathrm{d} \lambda}\left|u<u^{\prime}\right\rangle+\frac{\mathrm{d} a_{\lambda}\left(u^{\prime}, u\right)}{\mathrm{d} \lambda}\left|u^{\prime}<u\right\rangle
$$

Using the fact

$$
\begin{aligned}
X_{r s}\left|u<u^{\prime}\right\rangle & =\left[i p_{r}(u) h_{s}\left(u^{\prime}\right)+f_{r s}(u)+f_{r s}\left(u^{\prime}\right)\right]\left|u<u^{\prime}\right\rangle \\
X_{r s}\left|u^{\prime}<u\right\rangle & =\left[i p_{r}\left(u^{\prime}\right) h_{s}(u)+f_{r s}\left(u^{\prime}\right)+f_{r s}(u)\right]\left|u^{\prime}<u\right\rangle
\end{aligned}
$$

We find that

$$
S_{\lambda}\left(u, u^{\prime}\right)=e^{-i \lambda\left(p_{r}(u) h_{s}\left(u^{\prime}\right)-p_{r}\left(u^{\prime}\right) h_{s}(u)\right)} S\left(u, u^{\prime}\right)
$$

S-matrix boundary

Boundary asymptotic state

S-matrix boundary

Boundary asymptotic state

S-matrix boundary

Boundary asymptotic state

Deformed asymptotic state

$$
|u\rangle_{\mathrm{L}, \lambda}=a_{\lambda}(u)|u\rangle+a_{\lambda}(-u)|-u\rangle
$$

S-matrix boundary

Boundary asymptotic state

Deformed asymptotic state

$$
|u\rangle_{\mathrm{L}, \lambda}=a_{\lambda}(u)|u\rangle+a_{\lambda}(-u)|-u\rangle
$$

Taking derivative of eigenvalue equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\left[H_{\lambda}-h(u)\right]|u\rangle_{\mathrm{L}, \lambda}\right)=0
$$

S-matrix boundary

Boundary asymptotic state

Deformed asymptotic state

$$
|u\rangle_{\mathrm{L}, \lambda}=a_{\lambda}(u)|u\rangle+a_{\lambda}(-u)|-u\rangle
$$

We obtain

$$
X|u\rangle_{\mathrm{L}, \lambda}=\frac{\mathrm{d} a_{\lambda}(u)}{\mathrm{d} \lambda}|u\rangle+\frac{\mathrm{d} a_{\lambda}(-u)}{\mathrm{d} \lambda}|-u\rangle
$$

S-matrix boundary

Different cases

Bilocal deformation $X=\left[H_{r} \mid P_{s}\right]$

$$
S_{\mathrm{L}, \lambda}(u)=e^{i \lambda h_{r}(u) p_{s}(u)} S_{\mathrm{L}}(u)
$$

Confirmed earlier proposal in CFT
[Caselle, Fioravanti, Gliozzi and Tateo 2013]

S-matrix boundary

Different cases

Bilocal deformation $X=\left[H_{r} \mid P_{s}\right]$

$$
S_{\mathrm{L}, \lambda}(u)=e^{i \lambda h_{r}(u) p_{s}(u)} S_{\mathrm{L}}(u)
$$

Confirmed earlier proposal in CFT
[Caselle, Fioravanti, Gliozzi and Tateo 2013]

Odd charges $\quad X=P_{r} \quad$ [Loebbert 2012]

$$
S_{\mathrm{L}, \lambda}(u)=e^{2 i \lambda p_{r}(u)} S_{\mathrm{L}}(u)
$$

Specific for the boundary case. Does not change bulk S-matrix, only change the boundary S -matrix.

S-matrix defect

Topological defect

S-matrix defect

Topological defect

Deformed asymptotic state

$$
|u\rangle_{\mathrm{D}, \lambda}=a_{\lambda}(u)|u ; \varnothing\rangle+b_{\lambda}(u)|\varnothing ; u\rangle
$$

S-matrix defect

Topological defect

Deformed asymptotic state

$$
|u\rangle_{\mathrm{D}, \lambda}=a_{\lambda}(u)|u ; \varnothing\rangle+b_{\lambda}(u)|\varnothing ; u\rangle
$$

Taking derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\left[H_{\lambda}-h(u)\right]|u\rangle_{\mathrm{D}, \lambda}\right)=0
$$

S-matrix defect

Topological defect

Deformed asymptotic state

$$
|u\rangle_{\mathrm{D}, \lambda}=a_{\lambda}(u)|u ; \varnothing\rangle+b_{\lambda}(u)|\varnothing ; u\rangle
$$

We find that

$$
X|u\rangle_{\mathrm{D}, \lambda}=\frac{\mathrm{d} a_{\lambda}(u)}{\mathrm{d} \lambda}|u ; \varnothing\rangle+\frac{\mathrm{d} b_{\lambda}(u)}{\mathrm{d} \lambda}|\varnothing ; u\rangle
$$

S-matrix defect

Topological defect

Deformed asymptotic state

$$
|u\rangle_{\mathrm{D}, \lambda}=a_{\lambda}(u)|u ; \varnothing\rangle+b_{\lambda}(u)|\varnothing ; u\rangle
$$

This leads to

$$
T_{\lambda}(u)=\frac{b_{\lambda}(u)}{a_{\lambda}(u)}=\frac{b(u)}{a(u)}=T(u)
$$

The topological defect is not affected!

S-matrix defect

Non-topological defect

$$
\begin{aligned}
|u\rangle_{\mathrm{D}}= & \begin{array}{c}
u \\
\longrightarrow
\end{array} \| \cdots \cdots+\cdots \cdots \cdots \\
& a(u)|u ; \varnothing\rangle \\
& b(u)|\varnothing ; u\rangle
\end{aligned}
$$

$$
T(u)=\frac{b(u)}{a(u)} \quad R(u)=\frac{c(u)}{a(u)}
$$

- The reflection amplitude deformed like the boundary S-matrix
- The transmission amplitude not deformed

3. Deformed observables

Deformed spectrum I

Large volume limit

Deformed spectrum I

Large volume limit

Asymptotic Bethe ansatz equation

$$
e^{2 i p\left(u_{j}\right) L} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=1
$$

Quantization condition for an N particle state

Deformed spectrum I

Large volume limit

Quantization condition for an N particle state

Deformed spectrum I bilocal deformation

Take the deformation $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$
Deformed S-matrices

$$
\begin{aligned}
& S_{\lambda}(u, v)=S(u, v) e^{-i \lambda\left(p_{r}(u) h_{s}(v)-h_{s}(u) p_{r}(v)\right)} \\
& S_{\mathrm{L}, \lambda}(u)=S_{\mathrm{L}}(u) e^{i \lambda p_{r}(u) h_{s}(u)} \\
& S_{\mathrm{R}, \lambda}(u)=S_{\mathrm{R}}(u) e^{-i \lambda p_{r}(u) h_{s}(u)}
\end{aligned}
$$

$$
p_{r}(u)=\gamma_{r} \sinh (r u) \quad h_{s}(u)=\gamma_{s} \cosh (s u)
$$

Deformed spectrum I bilocal deformation

Take the deformation $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$
Deformed S-matrices

$$
\begin{aligned}
& S_{\lambda}(u, v)=S(u, v) e^{-i \lambda\left(p_{r}(u) h_{s}(v)-h_{s}(u) p_{r}(v)\right)} \\
& S_{\mathrm{L}, \lambda}(u)=S_{\mathrm{L}}(u) e^{i \lambda p_{r}(u) h_{s}(u)} \\
& S_{\mathrm{R}, \lambda}(u)=S_{\mathrm{R}}(u) e^{-i \lambda p_{r}(u) h_{s}(u)}
\end{aligned}
$$

- For $r=s$, Lorentz invariance preserved, CDD factors
- For $r=1$, change effective length, dynamical hard rod picture

Deformed spectrum I bilocal deformation

Take $r=1$

$$
X_{s}=\left[P \mid H_{s}\right]
$$

Deformed spectrum I bilocal deformation

Take $r=1$

$$
X_{s}=\left[P \mid H_{s}\right]
$$

Deformed Bethe equation

$$
e^{2 i L p\left(u_{j}\right)} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p\left(u_{j}\right)}
$$

Deformed spectrum I bilocal deformation

Take $r=1$

$$
X_{s}=\left[P \mid H_{s}\right]
$$

Deformed Bethe equation

$$
Q_{N}^{(s)}=\sum_{k=1}^{N} h_{s}\left(u_{j}\right)
$$

$$
e^{2 i L p\left(u_{j}\right)} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p\left(u_{j}\right)}
$$

Deformed spectrum I bilocal deformation

Take $r=1$

$$
X_{s}=\left[P \mid H_{s}\right]
$$

Deformed Bethe equation

$$
Q_{N}^{(s)}=\sum_{k=1}^{N} h_{s}\left(u_{j}\right)
$$

$$
e^{2 i L p\left(u_{j}\right)} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p\left(u_{j}\right)}
$$

Equivalent to the original BAE with

$$
L \rightarrow L+\lambda Q_{N}^{(s)}
$$

Deformed spectrum I bilocal deformation

Take $r=1$

$$
X_{s}=\left[P \mid H_{s}\right]
$$

Deformed Bethe equation

$$
Q_{N}^{(s)}=\sum_{k=1}^{N} h_{s}\left(u_{j}\right)
$$

$$
e^{2 i L p\left(u_{j}\right)} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p\left(u_{j}\right)}
$$

This leads to the flow equation

$$
\partial_{\lambda} E_{N}(\lambda, L)=Q_{N}^{(s)} \partial_{L} E_{N}(\lambda, L)
$$

Deformed spectrum I bilocal deformation

Take $r=1$

$$
X_{s}=\left[P \mid H_{s}\right]
$$

Deformed Bethe equation

$$
Q_{N}^{(s)}=\sum_{k=1}^{N} h_{s}\left(u_{j}\right)
$$

$$
e^{2 i L p\left(u_{j}\right)} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p\left(u_{j}\right)}
$$

This leads to the flow equation

$$
\partial_{\lambda} E_{N}(\lambda, L)=Q_{N}^{(s)} \partial_{L} E_{N}(\lambda, L)
$$

The effective length is changed, this can be interpreted by the dynamical hard rod picture.

Deformed spectrum I bilocal deformation

Dynamical hard rod

DHR deformation

[Cardy and Doyon 2020]
[YJ 2020]

$$
L \rightarrow L+\lambda Q_{N}^{(s)}
$$

- Point particles becomes finite length hard rods
- Length of each rod proportional to its charge
- For the other sign, distance between particles are increased

Deformed spectrum I bilocal deformation

More general case

Consider more general BAE $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$

$$
e^{2 i L\left[p\left(u_{j}\right)+\nu_{r} p_{r}\left(u_{j}\right)\right]} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=1
$$

Deformed spectrum I bilocal deformation

More general case

Consider more general BAE $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$

Deformed spectrum I bilocal deformation

More general case

Consider more general BAE $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$

$$
e^{2 i L\left[p\left(u_{j}\right)+\nu_{r} p_{r}\left(u_{j}\right)\right]} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p_{r}\left(u_{j}\right)}
$$

Deformed spectrum I bilocal deformation

More general case

Consider more general BAE $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$

$$
e^{2 i L\left[p\left(u_{j}\right)+\nu_{r} p_{r}\left(u_{j}\right)\right]} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p_{r}\left(u_{j}\right)}
$$

Effectively changes chemical potential

$$
\nu_{r} \rightarrow \nu_{r}+\frac{\lambda Q_{N}^{(s)}}{L}
$$

Deformed spectrum I bilocal deformation

More general case

Consider more general BAE $\quad X_{r s}=\left[P_{r} \mid H_{s}\right]$

$$
e^{2 i L\left[p\left(u_{j}\right)+\nu_{r} p_{r}\left(u_{j}\right)\right]} S_{\mathrm{L}}\left(u_{j}\right) S_{\mathrm{R}}\left(-u_{j}\right) \prod_{k \neq j}^{N} S\left(u_{j}, u_{k}\right) S\left(u_{j},-u_{k}\right)=e^{-2 i \lambda Q_{N}^{(s)} p_{r}\left(u_{j}\right)}
$$

Flow equation for the spectrum

$$
\partial_{\lambda} E_{N}\left(\lambda, L, \nu_{r}\right)=\frac{1}{L} Q_{N}^{(s)} \partial_{\nu_{r}} E_{N}\left(\lambda, L, \nu_{r}\right)
$$

Deformed spectrum I odd charge

Take the deformation $\quad X=P_{r}$
Deformed S-matrices

$$
\begin{aligned}
& S_{\lambda}(u, v)=S(u, v) \\
& S_{\mathrm{L}, \lambda}(u)=S_{\mathrm{L}}(u) e^{i \lambda p_{r}(u)} \\
& S_{\mathrm{R}, \lambda}(u)=S_{\mathrm{R}}(u) e^{-i \lambda p_{r}(u)}
\end{aligned}
$$

- These deformation do not change bulk S-matrix
- For $r=1$, change effective length

Deformed spectrum I odd charge

A thick wall

$$
L \rightarrow L+\lambda
$$

odd charge deformation

- The boundaries become "thicker"
- For the other sign, distance between boundaries are increased

Deformed spectrum I odd charge

Flow equation for spectrum
For $r=1$

$$
\partial_{\lambda} E_{N}(\lambda, L)=\partial_{L} E_{N}(\lambda, L)
$$

For $r>1$

$$
\partial_{\lambda} E_{N}\left(\lambda, L, \nu_{r}\right)=\frac{1}{L} \partial_{\nu_{r}} E_{N}\left(\lambda, L, \nu_{r}\right)
$$

- These are linear equations instead of non-linear ones
- Do not depend on details of the bulk excitations

Deformed spectrum I

Summary

- For large volume, deformed spectrum can be obtained from boundary BAE
- We obtained simple flow equation for finite volume spectrum. They are non-linear (linear) for bi-local and linear for (odd charge) deformations.
- Typically such flow equations are robust and do not depend on the volume. They should also hold in finite volume.

Deformed spectrum II

Finite volume

finite L

- For finite volume, finite size corrections become important.
- We apply the boundary Thermodynamic Bethe ansatz to compute the spectrum
- We can verify the flow equation which we obtained in the large volume limit
[LeClair, Mussardo, Saleur and Skorik 1995]

Deformed spectrum II

Finite volume

finite L

- For finite volume, finite size corrections become important.
- We apply the boundary Thermodynamic Bethe ansatz to compute the spectrum
- We can verify the flow equation which we obtained in the large volume limit
[LeClair, Mussardo, Saleur and Skorik 1995]
- General bilocal deformation involve higher charges
- Accordingly, we introduce twists in Bethe equation
- Related to chemical potentials in the mirror channel

Deformed spectrum II bilocal deformation

Boundary TBA $X_{r s}=\left[P_{r} \mid H_{s}\right]$

Deformed spectrum II bilocal deformation

Boundary TBA $X_{r s}=\left[P_{r} \mid H_{s}\right]$

Double Wick Rotation

$$
P \mapsto i \widetilde{H} \quad H \mapsto i \widetilde{P}
$$

Deformed spectrum II bilocal deformation

Boundary TBA $X_{r s}=\left[P_{r} \mid H_{s}\right]$

$Z_{a b} \sim \operatorname{tr}\left[e^{-R\left(H+\mu_{s} H_{s}\right)}\right]$

$$
Z_{a b} \sim\left\langle B_{a}\right| e^{-L\left(\widetilde{H}+\nu_{r} \widetilde{H}_{r}\right)}\left|B_{b}\right\rangle
$$

Deformed spectrum II bilocal deformation

Boundary TBA

Compute partition function in the closed channel.

$$
Z_{a b} \sim\left\langle B_{a}\right| e^{-L\left(\widetilde{H}+\nu_{r} \widetilde{H}_{r}\right)}\left|B_{b}\right\rangle
$$

Y_{μ}
Quantization condition

$$
e^{R Y_{\mu}\left(u+\frac{i \pi}{2}\right)} \widetilde{S}\left(u_{j},-u_{j}\right) \prod_{k \neq j}^{N} \widetilde{S}\left(u_{j}, u_{k}\right) \widetilde{S}\left(u_{j},-u_{k}\right)=1
$$

Deformed spectrum II bilocal deformation

Boundary TBA

Compute partition function in the closed channel.

$$
Z_{a b} \sim\left\langle B_{a}\right| e^{-L\left(\widetilde{H}+\nu_{r} \widetilde{H}_{r}\right)}\left|B_{b}\right\rangle
$$

Y_{μ}

Deformed spectrum II bilocal deformation

Boundary TBA

Compute partition function in the closed channel.

$$
Z_{a b} \sim\left\langle B_{a}\right| e^{-L\left(\widetilde{H}+\nu_{r} \widetilde{H}_{r}\right)}\left|B_{b}\right\rangle
$$

Y_{μ}

Deformed spectrum || bilocal deformation

Boundary TBA

Following standard procedure

$$
\epsilon(u)=2 L X_{\nu}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon}\right) \star \tilde{\varphi}_{+}
$$

Deformed spectrum || bilocal deformation

Boundary TBA

Following standard procedure

Deformed spectrum || bilocal deformation

Boundary TBA

Following standard procedure

Deformed spectrum II bilocal deformation

Boundary TBA

Following standard procedure

$$
\underbrace{\overbrace{0}^{\infty} \partial_{u} h\left(u+\frac{i \pi}{2}\right) \log \left(1+e^{-\epsilon}\right) \mathrm{d} u}_{\left.\quad \begin{array}{l}
\epsilon(u)=2 L_{\nu}^{\prime} X_{\nu}(u) \\
X_{\nu}(u)=h(u)+\nu_{r} h_{r}(u) \\
\chi_{a b}(u)=\bar{K}_{a}(u) K_{b}(u) \\
Q_{s}^{(0)}\left(L, \nu_{r}\right)=-\frac{1}{2 \pi i} \int_{0}^{\infty} \partial_{u} h_{s}\left(u+\frac{i \pi}{2}\right) \log \left(1+e^{-\epsilon}\right) \mathrm{d} u
\end{array}\right]}
$$

Deformed spectrum || bilocal deformation

Boundary TBA

Deformed BTBA equation

$$
\epsilon_{\lambda}(u)=2 L X_{\nu}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+, \lambda}
$$

Deformed spectrum || bilocal deformation

Boundary TBA

Deformed BTBA equation

$$
\epsilon_{\lambda}(u)=2 L X_{\nu}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+, \lambda}
$$

$$
\epsilon_{\lambda}(u)=2 L \widehat{X}_{\nu}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+}
$$

Deformed spectrum II bilocal deformation

Boundary TBA

Deformed BTBA equation

$$
\epsilon_{\lambda}(u)=2 L X_{\nu}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+, \lambda}
$$

$$
\epsilon_{\lambda}(u)=2 \hat{L}_{\nu_{r}} \rightarrow \nu_{r}+\frac{\lambda}{L} Q_{s}^{(0)}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+}
$$

Deformed spectrum II bilocal deformation

Boundary TBA

Deformed BTBA equation

$$
\epsilon_{\lambda}(u)=2 L X_{\nu}(u)-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+, \lambda}
$$

$$
\epsilon_{\lambda}(u)=2 \underset{\mathcal{L}_{\nu}(u)}{ }-\log \left[\chi_{a b}(u)\right]-\log \left(1+e^{-\epsilon_{\lambda}}\right) \star \tilde{\varphi}_{+}
$$

$$
\nu_{r} \rightarrow \nu_{r}+\frac{\lambda}{L} Q_{s}^{(0)}
$$

$$
\text { For } r=1 \quad L \rightarrow L+\lambda Q_{s}^{(0)}
$$

Deformed spectrum || bilocal deformation

Boundary TBA

Flow equation for $r>1$

$$
\partial_{\lambda} E^{(0)}\left(\lambda, L, \nu_{r}\right)=\frac{1}{L} Q_{s, \lambda}^{(0)} \partial_{\nu_{r}} E^{(0)}\left(\lambda, L, \nu_{r}\right)
$$

Flow equation for $r=1$

$$
\partial_{\lambda} E^{(0)}(\lambda, L)=Q_{s, \lambda}^{(0)} \partial_{L} E^{(0)}(\lambda, L)
$$

- These are the flow equation for ground state
- Matches exactly the one with large volume limit

Further comments

TTbar deformed partition function

Flow equation of the partition function

$$
\partial_{\lambda} Z_{a b}(R, L \mid \lambda)=-\left(\frac{\partial}{\partial R}-\frac{1}{R}\right) \partial_{L} Z_{a b}(R, L \mid \lambda)
$$

- This is the same as the one derived from random geometry [Cardy 2018]
- For other bilocal deformations, it seems hard to write down similar flow equation
- We can also write down the flow equation for the boundary entropy, or the exact g-function.

Conclusions

We studied solvable irrelevant deformations for IQFTs with integrable boundaries and defects

The deformed S-matrix can be determined. Deformed spectrum follows by standard methods

The integrable boundary has a specific solvable deformation which involve only the odd charges

The topological defects are not deformed by bilocal deformations

Outlook

- General boundary

What about boundaries that are not necessarily integrable

- Other observables

Defect and boundary correlation functions

- Other theories

Deformed CFT boundary states, Bose gas with boundary

[^0]: Factorized scattering

