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Integrable QFT

QFT described by an action

S:/ d:z:/ dy L

Quantize it, and compute observables (perturbatively)



Integrable QFT

QFT described by an action

S:/ dx/ dy L

Quantize it, and compute observables (perturbatively)

r

The bootstrap approach

| S

Factorized scattering

* S-matrix encodes dynamical info
* Find S-matrix non-perturbatively

* Compute other observables




S-matrix bootstrap

The bootstrap axioms

KA =111 3




S-matrix bootstrap

The bootstrap axioms
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« The importance of CDD factor become more clear now

« Spectrum can be found by Bethe ansatz and TBA

« Correlators can be found by form factor bootstrap




Boundary IQFT

Lagrangian description

SB :/ dy/ da:[,—l—/ dyLy
— 00 0 — 00
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Lagrangian description
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Boundary in space direction
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Boundary IQFT

Lagrangian description

SB :/ dy/ daz£+/ dyLy
— 00 0 — 00
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Boundary IQFT

Bulk integrability [Ghoshal and Zamolodchikov 1993]

There exist infinitely many conserved currents

aZTS-I—]. — az(_)s—l 82:Ts-|—1 — 8Z(:)s—l



Boundary IQFT

Bulk integrability [Ghoshal and Zamolodchikov 1993]

There exist infinitely many conserved currents

aZ/IYS—|—1 — az(as—l 8zcz_js—l—l — 8Z(:)s—l

Integrable boundary

Boundary conditions which preserves integrability
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Preserves infinitely many conserved charges



Boundary IQFT

Bootstrap description

* Scattering is purely elastic
* Even charges conserved

* Described by boundary S-matrix
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Boundary IQFT

Bootstrap description

* Scattering is purely elastic
* Even charges conserved ::: Sr(p)

* Described by boundary S-matrix p,'.{

Boundary S-matrices can be determined by bootstrap axioms
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Boundary IQFT

Bootstrap description

* Scattering is purely elastic
* Even charges conserved ::: Sr(p)

* Described by boundary S-matrix p,'.{

Boundary S-matrices can be determined by bootstrap axioms

Boundary Unitarity —
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Boundary IQFT

Bootstrap description

* Scattering is purely elastic
* Even charges conserved ::: Sr(p)

* Boundary S-matrix p/‘(

Boundary S-matrices can be determined by bootstrap axioms

ALEALARRRRRRRRRRRRRRRRRRRRY

Boundary Crossing




Boundary IQFT

Bootstrap description

* Scattering is purely elastic

* Even charges conserved ~E£ Sr(p)

* Boundary S-matrix

Find boundary S-matrix by solving bootstrap axioms

Compute other observables using integrability

There are new observables, such as boundary free energy and

exact g-function, boundary 1pt function, ...




Defect IQFT

Bootstrap descriptio" [Delfino, Mussardo and Simonetti 1994]
* Scattering can be transmissive and reflective R@ T_(P)
_p ~~~‘ '(¢"p

* Preserves integrability

* Transmission and reflection amplitudes I
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Topological vs non-topological

A purely transmissive is called topological, otherwise it is called non-
topological



Defect IQFT

Bootstrap description [Delfino, Mussardo and Simonetti 1994]
* Scattering can be transmissive and reflective Rgp) T_(p)
| - —p ™ “p
* Preserves integrability “n,, .,
* Transmission and reflection amplitudes P&

Topological vs non-topological

A purely transmissive is called topological, otherwise it is called non-
topological [Castro-Alvaredo, Fring and Gohmann 2002]

Only free theories can have integrable
non-topological defects




2. Solvable deformations



Deforming BIQFT

Even and odd charges

Integrability . é
—D \‘ 2
O:Ts41 = 0,04_ . B
Z _S—|—1 z _S 1 ) é SR(p)
azcrs—|—1 — ai@s—l g .f é
Conserved charges g
Is — / (T8+1dZ + @3—1d2> I_s — / (TS+1dZ + (:)S_le)
C C
Define
H, = I, + I, P, = —i(I, — I,)

The H-type higher charges are preserved by the boundary



Deforming BIQFT

Bilinear deformations

Two currents

JILLLIS = (Hs, Tn.)

Bilinear deformation

_H)\ — / Ors

r=s=1is the TTbar deformation
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Deforming BIQFT

Bilinear deformations

Two currents

‘]lljls = (Hs, Tn.) JJ'LDLT = (Pr, Ip,)
Bilinear deformation
—HA = / Oy Ors = —€p i J%,

r=s=1is the TTbar deformation

Bilocal deformations [Bargheer, Beisert and Loebbert 2012]
d — day d
—H)\ [XTS,H)\] X?“s — X1 AX2 Pr(xl)Hs(aQ)
d)\ r1<T2

[Kruthoff, Parrikar 2020] [Guica’s talk]



Deforming BIQFT

Relation between two deformations

XpH) = [ On(a)ds = Tp, () H, + Pr (s

Half infinite line

dH

S, = —&0

X""S7H TS
LY / O, (x)dz
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Deforming BIQFT

Relation between two deformations

[Xr87 H] — / (97“8(x)d—3j — jPr (SL)HS + Prj’Hs (SR)

Half infinite line

S, = —&0

dH
X’T’S)‘H 'T'S
dr 1= / ©

LR (LLT LR LR RLRARRARRAR AR AR

SR

« For boundary case, order of two charges is important

e Use bi-local formulation and find deformed S-matrices




'S-matrix buik
Asymptotic 2-particle S-matrix

”Ux) u,> — e @—> e > _|_ _____ @> - @o— - _|_ UV

lu < u') ' < u)  local contribution



'S-matrix buik

Asymptotic 2-particle S-matrix

does not affect S-matrix



'S-matrix buik

Asymptotic 2-particle S-matrix

U U
----- o @—>
lu" < u)




'S-matrix buik

Asymptotic 2-particle S-matrix

Deformed asymptotic state

lu,u'yy & ay(u,u)|u < u') +ax(u,u)u < u)



'S-matrix buik

Deformed S-matrix

lu, u' )\~ ax(u,u)|u <u') 4+ ax(u,u)|u < u)



'S-matrix buik

Deformed S-matrix

lu, u' )\~ ax(u,u)|u <u') 4+ ax(u,u)|u < u)

Starting from the eigenvalue equation

HjJu, u')x = [A(u) + h(u)]Ju, u) 5



'S-matrix buik

Deformed S-matrix

lu, u' )\~ ax(u,u)|u <u') 4+ ax(u,u)|u < u)

Starting from the eigenvalue equation

HjJu, u')x = [A(u) + h(u)]Ju, u) 5

Taking derivative

% ([HA — h(u) — h(u)]|u, u’>>\) =0



'S-matrix buik

Deformed S-matrix

lu, u' )\~ ax(u,u)|u <u') 4+ ax(u,u)|u < u)

Starting from the eigenvalue equation

HjJu, u')x = [A(u) + h(u)]Ju, u) 5

Taking derivative

____________

———————————

—H) = [ X;s, H)]



'S-matrix buik

Deformed S-matrix

lu, u' )\~ ax(u,u)|u <u') 4+ ax(u,u)|u < u)

Starting from the eigenvalue equation

Hj|u, u')x = [A(u) + h(u)]u, i) 5

Taking derivative

____________

—————————

—————————

———————————



\ S-matrix bk

Deformed S-matrix

lu, u' )\ = ax(u,u')|u <u') +ax(u',u)|lu’ <u)

Starting from the eigenvalue equation

HjJu, u')x = [A(u) + h(u)]Ju, u) 5

Taking derivative

d
o ([Hx = h(u) = h(u)]Ju,u')5) =0
Find that
/ d /
Xrs|lu,u')\ = da}‘((;i’u ) u < u') + aA((;j\’w u' < u)




\ S-matrix bk

Deformed S-matrix

day(u', u)
dA

day(u,u’)

/
) U < u)

lu < u') +

X’r‘s‘ua U,>>\ —




\ S-matrix bk

Deformed S-matrix

day(u', u)
dA

day(u,u’)
dA

Xrslu,u'yy = lu < u') + u' < u)

Using the fact

Xyslu < u') = [ipr(u)hs(u') + frs(u) + frs(u)] [u < o)



\ S-matrix bk

Deformed S-matrix

day(u', u)
dA

day(u,u’)

/
) U < u)

lu < u') +

X’r‘s‘ua ’LL,>>\ —

Using the fact

Xyslu < u') = [ipr(u)hs(u') + frs(u) + frs(u)] [u < o)

Xf,qs = / d$1 d$2 Pr(xl)%3($2)
T1<T2



'S-matrix buik

Deformed S-matrix

day(u,u’)
dA

er‘uau,>>\ — ‘u < U/> T

Using the fact

———————————————————

! i both density act
 Aps = / dz1 dzo Pr(z1)Hs(22) ' on the same particle
i r1<IT2 :



\ S-matrix bk

Deformed S-matrix

day(u', u)
dA

day(u,u’)

/
) U < u)

lu < u') +

X’r‘s‘ua ’LL,>>\ —

Using the fact
Xrslu < ') = lipr(w)hs(u') + frs(u) + frs(u)] [u < ')
Xrslu" <) = [ipr(u)hs(u) + frs(u') + frs(u)] [u" < u)



\ S-matrix bk

Deformed S-matrix

day(u', u)
dA

day(u,u’)
dA\

Xrslu,u'yy = lu < u') + u' < u)

Using the fact
Xrslu < ') = lipr(w)hs(u') + frs(u) + frs(u)] [u < ')
Xrslu" <) = [ipr(u)hs(u) + frs(u') + frs(u)] [u" < u)

We find that [Smirnov and Zamolodchikov 2016]

S)\(’U,, ’U,/) _ e—iA(p,n(u)hs(7,L’)—p7~(u’)h3(u))S(u7 ’LL,)



‘ S-matrix boundary

Boundary asymptotic state




‘ S-matrix boundary
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‘ S-matrix boundary

Boundary asymptotic state
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Deformed asymptotic state

wLa = ax(u)|u) +ax(=u)| —u)




‘ S-matrix boundary

Boundary asymptotic state

~——
c
'
L]
L]
:I
L]
L]
2Ly
.-
S
N——"

Deformed asymptotic state
w)Lx = ax(u)lu) + ax(—u)| —u)

Taking derivative of eigenvalue equation

d

— ([ = h(w)][u)ra) =0




'S-matrix boundary

Boundary asymptotic state

2Ly

Deformed asymptotic state

We obtain

wLa = ax(u)|u) +ax(=u)| —u)

X|U>L7>\ =

day(u)
dA

u) +




‘ S-matrix boundary

Different cases

Bilocal deformation X — [H,|P,]

St (u) = e (u)ps(u) g ()

Confirmed earlier proposal in CFT [Caselle, Fioravanti, Gliozzi and Tateo 2013]



‘ S-matrix boundary

Different cases

Bilocal deformation X — [H,|P,]

St (u) = e (u)ps(u) g ()

Confirmed earlier proposal in CFT [Caselle, Fioravanti, Gliozzi and Tateo 2013]

Odd charges X = P,  [Loebbert 2012]

Spa(u) = 2P gy (y)

Specific for the boundary case. Does not change bulk S-matrix, only
change the boundary S-matrix.



\ S-matrixX defect

Topological defect




\ S-matrixX defect

Topological defect

Deformed asymptotic state

[u)p A = ax(u)|u; @) + ba(u)| 25 u)




\ S-matrixX defect

Topological defect

Deformed asymptotic state
w)p.a = ax(uw)|u; @) + bx(u)|F; u)

Taking derivative




\ S-matrix defect

Topological defect

[u)p,x = ax(u)|u; D) + bx(u)|T; u)
We find that
day(u) dby(u)
— . @.
X"U,>D,)\ d)\ ’U, ®> _l_ d)\ ’ ,’U,>




\ S-matrixX defect

Topological defect

This leads to

The topological defect is not affected !




\ S-matrix defect

Non-topological defect

U Uu —U

[u)p = @i o SRREEE] SRS > |+ <@t
dWg)  bwloie)  e(w)|—u; o)
T(u) = % R(u) = %

* The reflection amplitude deformed like the boundary S-matrix

« The transmission amplitude not deformed




3. Deformed observables



Deformed spectrum |

Large volume limit

L>1



Deformed spectrum |

Large volume limit

LU0y
ASHRNHANEENRRRRANERNRNNNNNNY

L>1

Asymptotic Bethe ansatz equation

N
PTGy (uy) Sr(—uy) | | Sy un)S (g, —ux) =1
k#j

Quantization condition for an N particle state



Deformed spectrum |

Large volume limit

LU0y
ASHRNHANEENRRRRANERNRNNNNNNY

<€ >
L>1,
Spectrum
Asymptotic Bethe ansatz equation En = Z h(u;
- .7
o2 L S
ip(uj) St (‘LL])SR u] HS u],uk)S(U],—Uk) =1
k#j

Quantization condition for an N particle state



Deformed spectrum | bilocal deformation

Take the deformation X, = [P,.|H]

Deformed S-matrices

7~

Sx(u,v) = S(u,v) e~ A Pr(w)hs(v)=hs(u)pr(v))

St (u) = St (u) et Pr(u)hs(u)

Sro(u) = Sgr(u) o~ IApr(u)hs (u)

pr(w) = 7, sinh(ru) hs(u) = v cosh(su)



Deformed spectrum | bilocal deformation

Take the deformation X, = [P.|H]

Deformed S-matrices

r )

S)\(’U,7 ’U) — S(’U,, ’U) e—i)\(pr(u)hs (v)—hs(w)p,(v))
SL,A(U) = 5L, (u) AP (u)hs(u)

Sroa(u) = Sk (u) o~ iAPr(u)hs (u)

* For r=s, Lorentz invariance preserved, CDD factors

« For r=1, change effective length, dynamical hard rod picture




Deformed spectrum | bilocal deformation

Take r=1 X = |P|H]



Deformed spectrum | bilocal deformation

Take r=1 Xs = |[P|Hy]
Deformed Bethe equation

N
€2in(uj)SL (Uj>SR<_Uj> H S(uj, Uk)S(’LLj, _Uk:) _ e—2i>\Q§\f)p(uj)
k#j



Deformed spectrum | bilocal deformation

Take r=1 X, = [P’Hs] N

Deformed Bethe equation k=1

P
Lp(uy L 90 ol
GZsz(ug)SL(Uj>SR(—uj) H S(u;, ur)S(wj, —uy) = e 2iAQ ) p(u;) }

kj N

-
4



Deformed spectrum | bilocal deformation

Take r=1 X = |P|H]

Deformed Bethe equation

N
e 1P03) Sy (u) Sr(—uy) | | S(uy,ur)S(uj, —up)

k]

Equivalent to the original BAE with

I — L A

-

———————————————

———————————————




Deformed spectrum | bilocal deformation

-
Take r=1 X.=[P|H ) N

s = |[P|Hy] §v) _ Z he (u;)
Deformed Bethe equation L k=1

: SV
) Sy (u) Sr(—uy) | [ S(uj,un)S(uy, —uy) = e ? A plea) |

kZi  Smmmmmmmeeeeeeeo

This leads to the flow equation

NEN(N L) = QYo Ex (A, L)



Deformed spectrum | bilocal deformation

4 R
Take r=1 X. = [PIH . N
s = [P|Hs] 5\7) _ Z hs ()
Deformed Bethe equation 9 k=1 y
- N SR
GQsz(uj)SL (Uj)SR(—’LLj) H S(uja uk)S(ujv _uk’> :i G_QZAQN p(u;) i
k] S

This leads to the flow equation

HhEnx(\ L) = QYo Ex(\ L)

The effective length is changed, this can be interpreted by the

dynamical hard rod picture.




Deformed spectrum | bilocal deformation

Dynamical hard rod

LLLLLLLL L

LLLLLLLL L

DHR deformation

AALLELLRRRERARRRRRRR AR

AALLELLRRRERARRRRRRR AR

[Cardy and Doyon 2020]
[YJ 2020]

L—L+2QY

* Point particles becomes
finite length hard rods

* Length of each rod
proportional to its charge

* For the other sign, distance
between particles are
increased



Deformed spectrum | bilocal deformation

More general case

Consider more general BAE Xps = P | H,]

N
g2 Llp(u)+tvrpr(ui)l gy (4 ) SR (—u s S(wi, ug)S(wi, —uy) = 1
J J J J
k#j




Deformed spectrum | bilocal deformation

More general case

Consider more general BAE Xps = P | H,]

151, () S ()

————————— 4

a new twist




Deformed spectrum | bilocal deformation

More general case

Consider more general BAE Xps = P | H,]

pmm—m—————== \ N
e Elug)itvr o (uillGy (u) Sp (—uy) [T S(uy, ue)S(uj, —ug) = 1
. k]
a new twist

N
e2tL[p(uj)+vr pr(uj)]SL (Uj)SR(—Uj) H S(uj, uk)S(uj, —up) = G—QiAQg\?)Pr(ug’)
oy




Deformed spectrum | bilocal deformation

More general case

Consider more general BAE Xps = P | H,]

N — . N
2 E )it 2 lGy () S (—ug) [ S (g i) S (g, —up) =1
a new twist W7
ol ()
e2tL[p(uj)+vr pr(uj)]SL(uj)SR(_uj) H S(uj, uk)S(uj, —uy,) = e~ 2IAQ N pr(uj)
kj

Effectively changes chemical potential

QY
Vp — Vp + 7




Deformed spectrum | bilocal deformation

More general case

Consider more general BAE Xps = P | H,]

N — . N
2 E )it 2 lGy () S (—ug) [ S (g i) S (g, —up) =1
a new twist W7
ol ()
e2tL[p(uj)+vr pr(uj)]SL(uj)SR(_uj) H S(uj, uk)S(uj, —uy,) = e~ 2IAQ N pr(uj)
kj

Flow equation for the spectrum

L (s
INEN(A, L, v,) = ng\,)aWEN(A,L, V)




Deformed spectrum | odd charge

Take the deformation X = P.

Deformed S-matrices

« These deformation do not change bulk S-matrix

« Forr=1, change effective length




Deformed spectrum | odd charge

A thick wall

L— L+ A\

LLLLLLLL L
ALY

* This is specific to the
boundary case with r=1

* The boundaries become

“thicker”
R e e RS o> *—>- * For the other sign, distance
—)\/2 A2 between boundaries are
Increased



Deformed spectrum | odd charge

Flow equation for spectrum

For r=1

(%\EN()\, L) = 8LEN()\, L)
Forr>1

1
8,\EN()\, L, Vr) — z@,,TEN()\, L, I/r)

« These are linear equations instead of non-linear ones

« Do not depend on details of the bulk excitations




Deformed spectrum |

Summary

L>1

* For large volume, deformed spectrum can be obtained from boundary
BAE

* We obtained simple flow equation for finite volume spectrum. They are
non-linear (linear) for bi-local and linear for (odd charge) deformations.

* Typically such flow equations are robust and do not depend on the
volume. They should also hold in finite volume.



Deformed spectrum Il

Finite volume

LLLLLLLL L L L

finite L

* For finite volume, finite size corrections
become important.

* We apply the boundary Thermodynamic
Bethe ansatz to compute the spectrum

* We can verify the flow equation which
we obtained in the large volume limit

[LeClair, Mussardo, Saleur and Skorik 1995]



Deformed spectrum Il

Finite volume

* For finite volume, finite size corrections
become important.

* We apply the boundary Thermodynamic
Bethe ansatz to compute the spectrum

LLLLLLLL L L L

* We can verify the flow equation which
we obtained in the large volume limit

finite L
[LeClair, Mussardo, Saleur and Skorik 1995]

General bilocal deformation involve higher charges

Accordingly, we introduce twists in Bethe equation

Related to chemical potentials in the mirror channel




Deformed spectrum I bilocal deformation
Boundary TBA X, = [P, |H,]

chemical potential

ey

| L

chemical potential X,

AAEERARRRERRRRNRERRRRNRRRRRRNRRRNS \\)\

R>1

ARSI

\‘E\\\\\\\\\\\\\\\\\

|

[Hernandez-Chifflet, Negro and Sfondrini 2019]



Deformed spectrum 1l bilocal deformation

Boundary TBA X,, = [P.|H,] ( | | )
Double Wick Rotation
chemical potential P iH H s iP
Y, . y
T I——Y
% chemical potential X,
/ Y
7 Y
Z
R>1 %
/ —
Z —
7
7
2 ¥ IR
.,__?/ v
l ” .
| > twist
L

[Hernandez-Chifflet, Negro and Sfondrini 2019]



Deformed spectrum 1l bilocal deformation

Boundary TBA X.. = [P.|H ( h
e [ T| S] Double Wick Rotation
chemical potential P iH H s iP
Y, 1\ J
2 l/ f':;; ;
% chemical potential X,
7
Z IR %\
Z
Z twist
R>1 Z i 1
Z p— V, T T
2 "
2 SN N A N N N N
..,__VXU
7
l Ll .
< K >| twist
L
N —R(H+psHs) —L(H+v,H,
Zap ~ tr e ] Zay ~ (Bgle LHAvH) | By

[Hernandez-Chifflet, Negro and Sfondrini 2019]



Deformed spectrum I bilocal deformation
Boundary TBA

A

X Compute partition function in

the closed channel.

Ty~ <Ba|e—L(I§+V7~I§T) ’Bb>

A EEEANANARNRRNRRARARNEANANANANANNNNANANY
}f
L

Quantization condition

e () S (uy, —uz) [ 8wy, we)S(uj, —up) = 1



Deformed spectrum I bilocal deformation
Boundary TBA

A

X Compute partition function in

the closed channel.

Ty~ <Ba|e—L(I§+V7~I§T) ’Bb>

A EEEANANARNRRNRRARARNEANANANANANNNNANANY
}f
L

Yi(u) = e(u) + pses
Quantization condition w(u) = e(u) + pses(u)




Deformed spectrum I bilocal deformation
Boundary TBA

A

X Compute partition function in

the closed channel.

Ty~ <Ba|e—L(I§+V7~I§T) ’Bb>

A EEEANANARNRRNRRARARNEANANANANANNNNANANY
Y,
L

Quantization condition

S-matrix in the mirror channel



Deformed spectrum I bilocal deformation
Boundary TBA

Following standard procedure

e(u) = 20X, (u) — log [Xap(u)] —log (1 4+ e™°) x o



Deformed spectrum I bilocal deformation
Boundary TBA

Following standard procedure




Deformed spectrum I bilocal deformation
Boundary TBA

Following standard procedure




Deformed spectrum Il bilocal deformation
Boundary TBA

Following standard procedure

©)(r, -
QS ( ,VT) 2T 0

EO(L, ) = 5= [ uh(u+ ) log (147 du
0
1 O

Oy h s (u + %r) log (1 4 e_e) du




Deformed spectrum I bilocal deformation
Boundary TBA

Deformed BTBA equation

ex(u) = 2LX, (u) — log [Xab(u)] —log (1 + ™) % P4



Deformed spectrum I bilocal deformation
Boundary TBA

Deformed BTBA equation
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Deformed spectrum Il bilocal deformation
Boundary TBA

Deformed BTBA equation

ex(u) = 2LX, (u) — log [Xab(u)] —log (1 + ™) % P4




Deformed spectrum Il bilocal deformation
Boundary TBA

Flow equation for r>1

1
8>\E(0) <)‘7 L, V"“) - ZQg?;\aVrE(O) ()‘7 L, V?“)
Flow equation for r=1

HEO (N L) = Q3L EO (A, L)

« These are the flow equation for ground state

* Matches exactly the one with large volume limit




Further comments

TTbar deformed partition function

Flow equation of the partition function

0 1
8)\Zab(R,L|)\) — (ﬁ - E) aLZab(R,LP\)

* This is the same as the one derived from random geometry [Cardy 2018]

» For other bilocal deformations, it seems hard to write down similar flow
equation

» We can also write down the flow equation for the boundary entropy, or the
exact g-function.



Conclusions

We studied solvable irrelevant deformations for IQFTs with
integrable boundaries and defects

The deformed S-matrix can be determined. Deformed
spectrum follows by standard methods

The integrable boundary has a specific solvable deformation
which involve only the odd charges

The topological defects are not deformed Dy bilocal
deformations



Outlook

* General boundary

What about boundaries that are
not necessarily integrable

Other observables

Defect and boundary correlation
functions

Other theories

Deformed CFT boundary states,
Bose gas with boundary




