APCTP Focus Program: Exact result on irrelevant deformations of QFTs

Based on 2104.09529 Kyungsun Lee (GIST) Piljin Yi (KIAS) Junggi Yoon (APCTP)

$T\overline{T}$ Deformed Fermionic Theories Revisited

Junggi Yoon APCTP

September 30, 2021

$Tar{T}$ -deformed Fermionic Theories Revisited

Kyungsun Lee, Piljin. Yi and JY arXiv: 2104.09529

Kyungsun Lee GIST

Piljin Yi KIAS

Contents

- Motivation
- II. Take-home Messages of Our Works
- III. $T\bar{T}$ Deformation of Free Scalar Field
- IV. $T\bar{T}$ Deformation of Free Fermion
- V. Negative Norm States
- VI. $T\bar{T}$ Deformation of $\mathcal{N}=(1,1)$ SUSY Model and Green-Schwarz Action

Motivation

$T\overline{T}$ Deformation

* Flow equation for $T\overline{T}$ deformation

$$\partial_{\lambda}\mathcal{L} = \frac{1}{2} \epsilon_{\mu\nu} \epsilon^{\rho\sigma} T^{\mu}_{\ \rho} T^{\nu}_{\ \sigma}$$

Features 1: Deformed Spectrum

 \star Universal formula for $T\overline{T}$ Deformed Spectrum

$$E_n(L,\lambda) = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} E_n + \frac{4\lambda^2}{L^2} P_n^2} - 1 \right]$$

$$P_n(L,\lambda) = P_n(L)$$

 E_n : Undeformed Energy

 P_n : Undeformed Momentum

Figure 2: $T\bar{T}$ Deformed Lagrangian

- * Flow equation $\partial_{\lambda}\mathcal{L} = \frac{1}{2}\epsilon_{\mu\nu}\epsilon^{\rho\sigma}T^{\mu}_{\rho}T^{\nu}_{\sigma}$
 - ✓ EMT on RHS: Derivative of deformed Lagrangian w.r.t. field
 - ✓ This leads to differential equation of the Lagrangian
 - Can be solved perturbatively in principle. Mostly, we can find exact solutions.
 - ✓ Initial condition: $\mathcal{L}[\lambda = 0] = \mathcal{L}_{undeformed}$
 - ✓ e.g. Deformation of free scalar field: $\mathcal{L} = -\frac{1}{2\lambda} \left[\sqrt{1 + 2\lambda(-\dot{\phi}^2 + \phi^2)} 1 \right]$
- * This is related to Nambu-Goto action for 3D target space with "static gauge"
 - ✓ usually difficult to quantize the NG action
- * Relation to dynamical coordinate transformation and 2D gravity

Bridge between Lagrangian and Spectrum

From the spectrum,

$$E_n(L,\lambda) = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} E_n + \frac{4\lambda^2}{L^2} P_n^2} - 1 \right]$$

one might guess the deformed Hamiltonian as follow

$$H = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} H_{(0)} + \frac{4\lambda^2}{L^2} P_{(0)}^2} - 1 \right]$$

- * Is it too good to be true?
- * "semi-classical" derivation of the above Hamiltonian from the string [Theisen, Jorjadze, 2020]: "gauge choice"
- st What is the concrete relation between $Tar{T}$ deformed Lagrangian and the above Hamiltonian?

$$\mathcal{L} = -\frac{1}{2\lambda} \left[\sqrt{1 + 2\lambda(-\dot{\phi}^2 + \phi'^2)} - 1 \right]$$

$$H = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} H_{(0)} + \frac{4\lambda^2}{L^2} P_{(0)}^2} - 1 \right]$$

$$H = \frac{L}{2\lambda} \left| \sqrt{1 + \frac{4\lambda}{L} H_{(0)} + \frac{4\lambda^2}{L^2} P_{(0)}^2} - 1 \right|$$

Take-home Messages

Equivalence of Two Hamiltonians

- * From $T\bar{T}$ deformed Lagrangian
 - $\checkmark \text{ Flow equation: } \partial_{\lambda}\mathcal{L} = \frac{1}{2}\epsilon_{\mu\nu}\epsilon^{\rho\sigma}T^{\mu}{}_{\rho}T^{\nu}{}_{\sigma} \qquad \qquad \mathcal{L} = -\frac{1}{2\lambda}\Big[\sqrt{1+2\lambda(-\dot{\phi}^2+\phi^2)}-1\Big]$
 - ✓ Legendre Transformation to Hamiltonian Density
 - → One integral for Hamiltonian
- * From deformed Energy: $E_n(L,\lambda) = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} E_n + \frac{4\lambda^2}{L^2} P_n^2} 1 \right]$
 - might conjecture $H = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} H_{(0)} + \frac{4\lambda^2}{L^2} P_{(0)}^2} 1 \right]$
 - ✓ One integral inside square-root
 - → Many integrals in Taylor's expansion.

Noether vs Metric Variation?

- * Two ways to evaluate Energy-momentum tensor
 - ✓ Noether procedure: EMT is not symmetric in general. e.g. fermion
 - ✓ Variation w.r.t. metric: EMT is symmetric by construction.
 - ✓ Usually, they are related by the improvement term.
- * When we solve flow equation $\partial_{\lambda}\mathcal{L} = \frac{1}{2}\epsilon_{\mu\nu}\epsilon^{\rho\sigma}T^{\mu}_{\ \rho}T^{\nu}_{\ \sigma}$, two EMT give different solutions.
 - ✓ Are they equivalent? (e.g. field redefinition?)
 - No. doubling of d.o.f. $\mathcal{L} = \frac{i}{2}\psi_+\dot{\psi}_+ + \frac{i}{2}\psi_-\dot{\psi}_- + \cdots + \lambda\psi_+\dot{\psi}_+\psi_-\dot{\psi}_-$

$T\bar{T}$ Deformation and SUSY

- * $T\bar{T}$ deformation $\partial_{\lambda}\mathcal{L}=\frac{1}{2}\epsilon_{\mu\nu}\epsilon^{\rho\sigma}T^{\mu}_{\rho}T^{\nu}_{\sigma}$: Not SUSY completed
 - \checkmark Does $T\bar{T}$ deformation break SUSY? (perturbative check by [Giraldo-Rivera et al, 2019]
 - ✓ If not, what is the deformed supersymmetry transformation and the deformed supercharge Q?

$T\bar{T}$ Deformation of Free Scalar Field and Spectrum

Undeformed Free Scalar Field

* Undeformed Lagrangian

$$\checkmark \qquad \mathscr{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}\phi^2$$

- * From Lagrangian (density) to Hamiltonian (density) by $\Pi = \frac{\delta \mathcal{L}}{\delta \dot{\phi}} = \dot{\phi}$
- * Hamiltonian and Momentum

$$I_{(0)} = \frac{1}{2} \int dx \left[\Pi^2 + \phi^2 \right] = \frac{\pi}{L} \sum_{k} \left[\alpha_{-k} \alpha_k + \bar{\alpha}_{-k} \bar{\alpha}_k \right] = H_+ + H_-$$

$$P_{(0)} = \int dx \ \Pi \phi' = \frac{\pi}{L} \sum_{k} \left[\alpha_{-k} \alpha_k - \bar{\alpha}_{-k} \bar{\alpha}_k \right] = H_+ - H_-$$

$T\bar{T}$ Deformation of Free Scalar Field

* Deformed Lagrangian

$$\mathscr{L} = -\frac{1}{2\lambda} \left[\sqrt{1 + 2\lambda(-\dot{\phi}^2 + \phi^2)} - 1 \right]$$

* From Lagrangian (density) to Hamiltonian (density) by

$$\Pi = \frac{\delta \mathcal{L}}{\delta \dot{\phi}} = \frac{\dot{\phi}}{\sqrt{1 + 2\lambda(-\dot{\phi}^2 + \phi'^2)}}$$

* Hamiltonian and momentum of Deformed Theory

Canonical Transformation

* Tempting to conjecture the deformed Hamiltonian (tilde)

$$\widetilde{H} = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} H_{(0)} + \frac{4\lambda^2}{L^2} P_{(0)}^2} - 1 \right] = H_+ + H_- + \frac{4\lambda}{L} H_+ H_- + \cdots$$

$$H_+ = \frac{\pi}{L} \sum_{k} \alpha_{-k} \alpha_k$$

$$H_- = \frac{\pi}{L} \sum_{k} \alpha_{-k} \alpha_k$$

* Compare with the previous Hamiltonian

- * For this, we need transformation from A_k , \bar{A}_k to α_k , $\bar{\alpha}_k$ such that $H[A,\bar{A}]=\widetilde{H}[\alpha,\bar{\alpha}]$
 - ✓ non-local: one integral vs many integrals
 - ✓ canonical: preserve canonical Poisson relations

Requirements

* The requirement for the map

$$A_{k} = \alpha_{k} + \frac{\lambda}{L^{2}} A_{k}^{(1)} [\alpha, \bar{\alpha}] + \frac{\lambda^{2}}{L^{4}} A_{k}^{(2)} [\alpha, \bar{\alpha}] + \mathcal{O}(\lambda^{3})$$

$$\overline{A}_{k} = \overline{\alpha}_{k} + \frac{\lambda}{L^{2}} \overline{A}_{k}^{(1)} [\alpha, \bar{\alpha}] + \frac{\lambda^{2}}{L^{4}} \overline{A}_{k}^{(2)} [\alpha, \bar{\alpha}] + \mathcal{O}(\lambda^{3})$$

✓ Canonical Transformation

$$\begin{split} [A_k,A_q] &= [\overline{A}_k,\overline{A}_q] = \delta_{k+q,0} \ , & [A_k,\overline{A}_q] = 0 \\ [\alpha_k,\alpha_q] &= [\overline{\alpha}_k,\overline{\alpha}_q] = \delta_{k+q,0} \ , & [\alpha_k,\overline{\alpha}_q] = 0 \end{split}$$

They lead to inhomogeneous differential equations for the map.

✓ Hamiltonian and momentum

$$H[A, \bar{A}] = \widetilde{H}[\alpha, \bar{\alpha}]$$

$$P[A, \bar{A}] = \widetilde{P}[\alpha, \bar{\alpha}]$$

From them, one can choose homogeneous solution.

Results

$$\text{Solution: } A_k = \alpha_k + \frac{\lambda}{L^2} A_k^{(1)} [\alpha, \bar{\alpha}] + \frac{\lambda^2}{L^4} A_k^{(2)} [\alpha, \bar{\alpha}] + \mathcal{O}(\lambda^3)$$

$$A_k^{(1)} = 2\pi \sum_{r,s} \frac{k}{r+s} \alpha_{k-r-s} \bar{\alpha}_{-r} \bar{\alpha}_{-s}$$

$$A_k^{(2)} = 2\pi^2 k \sum_{r,s,u,v} \frac{k-r-s-u-v}{(u+v)(r+s)} \alpha_{k-r-s-u-v} \bar{\alpha}_{-u} \bar{\alpha}_{-v} \bar{\alpha}_{-r} \bar{\alpha}_{-s}$$

$$-4\pi k \sum_{u,v} \frac{1}{u+v} \alpha_{k-u-v} \bar{\alpha}_{-u} \bar{\alpha}_{-v} L(H_+ + H_-) + 4\pi^2 k \sum_{r,s,u,v} \frac{1}{r+s} \alpha_{k-r-s-u-v} \alpha_r \alpha_s \bar{\alpha}_{-u} \bar{\alpha}_{-v}$$

$$x+s \neq 0$$

- * This is calculated at classical level (up to order $\mathcal{O}(\lambda^2)$).
- * At quantum level, it is confirmed up to order $\mathcal{O}(\lambda)$

$Tar{T}$ Deformation of Free Fermion and Spectrum

Free Fermion Case

- * One can also repeat a similar analysis for the free fermion case.
 - ✓ The final result is similar, but the intermediate procedure is qualitatively different.
 - ✓ worthwhile to present for pedagogical reason.
- * Free Fermion

$$\mathscr{L}_0 = \frac{i}{2} \psi_+ \dot{\psi}_+ + \frac{i}{2} \psi_- \dot{\psi}_- - \frac{i}{2} \psi_+ \psi'_+ + \frac{i}{2} \psi_- \psi'_-$$

* Conjugate momentum?

$$\pi_{+} = \frac{\overleftarrow{\delta} \mathcal{L}}{\overleftarrow{\delta} \dot{\psi}_{+}} = \frac{i}{2} \psi_{+} \quad \text{and} \quad \pi_{-} = \frac{\overleftarrow{\delta} \mathcal{L}}{\overleftarrow{\delta} \dot{\psi}_{-}} = \frac{i}{2} \psi_{-} : \text{There is no } \dot{\psi}_{\pm} \text{ on the RHS}$$

✓ forms the second class constraints: $\mathscr{C}_{\pm} = \pi_{\pm} - \frac{i}{2} \psi_{\pm}$

Dirac Bracket

- * Due to the 2nd class constraints $\mathscr{C}_{\pm} = \pi_{\pm} \frac{i}{2} \psi_{\pm}$, we need to evaluate Dirac bracket.
 - $\checkmark \quad \{\mathscr{C}_{\pm},\mathscr{C}_{\pm}\} = -i \quad \text{and} \quad \{\mathscr{C}_{+},\mathscr{C}_{-}\} = 0$
 - ✓ For example,

$$\{\psi_{+}(x_{1}), \psi_{+}(x_{2})\}_{D} = 0 - \{\psi_{+}(x_{1}), \mathscr{C}_{+}\} \mathscr{M}_{++}^{-1} \{\mathscr{C}_{+}, \psi_{+}(x_{2})\} = -i\delta(x_{1} - x_{2})$$

$T\bar{T}$ Deformation of Free Fermion

- * For fermion case, the solution of flow equation is truncated.
 - ✓ Due to the fermi statistics, non-vanishing term is very limited. e.g. $\psi_+ \partial_{++} \psi_+ \psi_- \partial_= \psi_-$, $\psi_+ \partial_= \psi_+ \psi_- \partial_+ \psi_-$
 - ✓ This is because Noether procedure does not produce higher derivative terms
- * Deformed Lagrangian

$$\mathscr{L} = \frac{i}{2} \psi_{+} \dot{\psi}_{+} + \frac{i}{2} \psi_{-} \dot{\psi}_{-} - \frac{i}{2} \psi_{+} \psi'_{+} + \frac{i}{2} \psi_{-} \psi'_{-} + \frac{\lambda}{2} \left(-\psi_{+} \psi'_{+} \psi_{-} \dot{\psi}_{-} + \psi_{+} \dot{\psi}_{+} \psi_{-} \psi'_{-} \right)$$

* Conjugate momentum?

$$\pi_{+} = \frac{\overleftarrow{\delta} \mathcal{L}}{\overleftarrow{\delta} \dot{\psi}_{+}} = \frac{i}{2} \psi_{+} + \frac{\lambda}{2} \psi_{+} \psi_{-} \psi'_{-} \quad \text{and} \quad \pi_{-} = \frac{\overleftarrow{\delta} \mathcal{L}}{\overleftarrow{\delta} \dot{\psi}_{-}} = \frac{i}{2} \psi_{-} - \frac{\lambda}{2} \psi_{+} \psi'_{+} \psi_{-} : \text{ There is no } \dot{\psi}_{\pm}, \text{ either.}$$

✓ forms the second class constraints:

$$\mathcal{C}_1 = \pi_+ - \frac{i}{2} \psi_+ - \frac{\lambda}{2} \psi_+ \psi_- \psi_-' \qquad , \qquad \mathcal{C}_2 = \pi_- - \frac{i}{2} \psi_- + \frac{\lambda}{2} \psi_+ \psi_+' \psi_-$$

Dirac Bracket

* Dirac bracket of the deformed theory.

$$i\{\psi_{+}(x_{1}), \psi_{+}(x_{2})\}_{D} = (1 + \lambda S_{-} + 2\lambda^{2}S_{+}S_{-})\delta(x_{1} - x_{2})$$

$$i\{\psi_{+}(x_{1}), \psi_{-}(x_{2})\}_{D} = -i\lambda(\psi'_{+}\psi_{-} + \psi_{+}\psi'_{-})\delta(x_{1} - x_{2})$$

$$S_{\pm} = i\psi_{\pm}\psi'_{\pm}$$

- * Hamiltonian of the deformed theory is
 - $H = \frac{i}{2} \int dx \left[\psi_+ \psi'_+ \psi_- \psi'_- \right] : \text{ of the same form as free Hamiltonian}$
 - \checkmark no explicit λ dependence
- * Then, how does it produce the deformed spectrum?

Comparison

* Scalar field case

- ✓ Deformed Hamiltonian has λ dependence
- ✓ The algebra of phase space variables is not changed.
 - : canonical transformation

* Fermion case

- ✓ Deformed Hamiltonian does not have explicit λ dependence
- ✓ The algebra of phase space variables is changed.
- Not canonical transformation.
- \checkmark This generates λ dependence for the spectrum

Transformation to Free Oscillators

st Want: Transformation from $Tar{T}$ deformed Hamiltonian

$$H = \frac{i}{2} \int dx \left[\psi_+ \psi'_+ - \psi_- \psi'_- \right]$$

$$i\{\psi_{+}(x_{1}), \psi_{+}(x_{2})\}_{D} = (1 + \lambda S_{-} + 2\lambda^{2}S_{+}S_{-})\delta(x_{1} - x_{2})$$

$$i\{\psi_{+}(x_{1}), \psi_{-}(x_{2})\}_{D} = -i\lambda(\psi'_{+}\psi_{-} + \psi_{+}\psi'_{-})\delta(x_{1} - x_{2})$$

to Hamiltonian in terms of free oscillators b_k , $ar{b}_k$

$$\widetilde{H} = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} H_{(0)} + \frac{4\lambda^2}{L^2} P_{(0)}^2} - 1 \right] = H_+ + H_- + \frac{4\lambda}{L} H_+ H_- + \cdots$$

$$\{b_k,b_q\} = \{\bar{b}_k,\bar{b}_q\} = \delta_{k+q,0} \ , \quad \{b_k,\bar{b}_q\} = 0$$

$$H_{+} \equiv -\frac{\pi}{L} \sum_{k} k b_{-k} b_{k}$$

$$H_{-} \equiv \frac{\pi}{L} \sum_{k}^{k} k \bar{b}_{-k} \bar{b}_{k}$$

Requirement

* The requirement for the map

$$\psi_k = b_k + \frac{\lambda}{L^2} \psi_k^{(1)}[b, \bar{b}] + \mathcal{O}(\lambda^2)$$

$$\overline{\psi}_k = \overline{b}_k + \frac{\lambda}{L^2} \overline{\psi}_k^{(1)}[b, \overline{b}] + \mathcal{O}(\lambda^2)$$

✓ Algebra

$$i\{\psi_{+}(x_{1}), \psi_{+}(x_{2})\}_{D} = (1 + \lambda S_{-} + 2\lambda^{2}S_{+}S_{-})\delta(x_{1} - x_{2})$$

$$i\{\psi_{+}(x_{1}), \psi_{-}(x_{2})\}_{D} = -i\lambda(\psi'_{+}\psi_{-} + \psi_{+}\psi'_{-})\delta(x_{1} - x_{2})$$

$$\{b_k, b_q\} = \{\bar{b}_k, \bar{b}_q\} = \delta_{k+q,0} , \quad \{b_k, \bar{b}_q\} = 0$$

They lead to inhomogeneous differential equations for the map.

✓ Hamiltonian and momentum

$$H[\psi, \bar{\psi}] = \widetilde{H}[b, \bar{b}]$$
 $P[\psi, \bar{\psi}] = \widetilde{P}[b, \bar{b}]$

From them, one can choose homogeneous solution.

Results

* Solution:
$$\psi_{k} = b_{k} + \frac{\lambda}{L^{2}} \psi_{k}^{(1)}[b, \bar{b}] + \mathcal{O}(\lambda^{2})$$

$$\psi_{+,k}^{(1)} = 2\pi \sum_{r,s} \frac{(k-r-s)s}{r+s} b_{k-r-s} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{-r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{-r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{-r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{s} : -\pi b_{k} \sum_{r} r : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{b}_{r}\bar{b}_{r}\bar{b}_{r} : \bar{b}_{r}\bar{$$

* This is confirmed at classical level as well as quantum level up to order $\mathcal{O}(\lambda)$.

Negative Norm States

What happens with Symmetric Energy Momentum Tensor?

* The deformed Lagrangian (by Noether EMT) is

$$\mathscr{L} = i\psi_{+}\partial_{=}\psi_{+} + i\psi_{-}\partial_{++}\psi_{-} + \lambda \left(-\psi_{+}\partial_{++}\psi_{+}\psi_{-}\partial_{=}\psi_{-} + \psi_{+}\partial_{=}\psi_{+}\psi_{-}\partial_{++}\psi_{-} \right)$$

- ✓ Coefficient of quartic term is special in that it does not generate a term $\psi_+ \dot{\psi}_+ \psi_- \dot{\psi}_-$
- * The symmetric EMT by metric variation has different coefficients of the quartic term.
 - ✓ And therefore, this produces the term $\psi_+\dot{\psi}_+\psi_-\dot{\psi}_-$
- * What's wrong with this term?

$T\overline{T}$ Deformation of Free Fermion

* From Noether Energy-momentum tensor

$$\mathcal{L} = \frac{i}{2}\psi_{+}\dot{\psi}_{+} + \frac{i}{2}\psi_{-}\dot{\psi}_{-} - \frac{i}{2}\psi_{+}\psi'_{+} + \frac{i}{2}\psi_{-}\psi'_{-} + \frac{\lambda}{2}\left(-\psi_{+}\psi'_{+}\psi_{-}\dot{\psi}_{-} + \psi_{+}\dot{\psi}_{+}\psi_{-}\psi'_{-}\right)$$

* From Symmetric Energy-momentum tensor

$$\mathcal{L} = \frac{i}{2}\psi_{+}\dot{\psi}_{+} + \frac{i}{2}\psi_{-}\dot{\psi}_{-} - \frac{i}{2}\psi_{+}\psi'_{+} + \frac{i}{2}\psi_{-}\psi'_{-} + \frac{3\lambda}{8}\left(-\psi_{+}\psi'_{+}\psi_{-}\dot{\psi}_{-} + \psi_{+}\dot{\psi}_{+}\psi_{-}\psi'_{-}\right)$$

$$-\frac{\lambda}{8}\psi_{+}\dot{\psi}_{+}\psi_{-}\dot{\psi}_{-} + \frac{\lambda}{8}\psi_{+}\psi'_{+}\psi_{-}\psi'_{-}$$

Emergent D.o.F.

* $T\overline{T}$ deformation of free fermion:

$$\mathcal{L} = \frac{i}{2}\psi_{+}\dot{\psi}_{+} + \frac{i}{2}\psi_{-}\dot{\psi}_{-} - \frac{i}{2}\psi_{+}\psi'_{+} + \frac{i}{2}\psi_{-}\psi'_{-} - \frac{\lambda}{8}\psi_{+}\dot{\psi}_{+}\psi_{-}\dot{\psi}_{-} + \cdots$$

* Conjugate momentum

$$\pi_{+} = \frac{\delta S}{\delta \dot{\psi}_{+}} = \frac{i}{2} \psi_{+} - \frac{\lambda}{8} \psi_{+} \psi_{-} \dot{\psi}_{-}$$

$$\pi_{-} = \frac{\delta S}{\delta \dot{\psi}_{-}} = \frac{i}{2} \psi_{-} + \frac{\lambda}{8} \psi_{+} \psi_{-} \dot{\psi}_{+}$$

Not constraints any more

- ✓ RHS contains $\dot{\psi}_{-}$: Formally, it can be inverted. And it is not constraint any more.
- ✓ D.o.F, which would have been removed, is now coupled to the system.
- ✓ Doubling of fermionic D.o.F.: symplectic fermion [A. LeClair and M. Neubert, 2007]
 - cf) Ostrogradsky instability

Feature 3 of $T\overline{T}$ Deformation 2

Emergent Extra D.o.F.

$$\partial_{\lambda} \mathcal{L} = \frac{1}{2} \epsilon_{\mu\nu} \epsilon^{\rho\sigma} T^{\mu}{}_{\rho} T^{\nu}{}_{\sigma}$$

$T_{\mu\nu}$ from Noether procedure

"Usually" NO emergent D.o.F

$T_{\mu\nu}$ from Metric variation

"Usually" emergent D.o.F with negative norm

Toy Model for Negative Norm State

Quantum mechanical toy model

$$L = \frac{i}{2}\bar{\psi}\dot{\psi} - \frac{i}{2}\dot{\bar{\psi}}\psi + m\bar{\psi}\psi - \lambda\dot{\bar{\psi}}\dot{\psi}$$
 | Flello!

Phase space: ψ , $\bar{\psi}$, π , $\bar{\pi}$

$$\psi$$
, $\bar{\psi}$, π , $\bar{\pi}$

no constraints

$$b, b^{\dagger}, c, c^{\dagger}$$

$$\{b, b^{\dagger}\} = 1$$
$$\{c, c^{\dagger}\} = -1$$

- Negative norm: $\langle 0 | cc^{\dagger} | 0 \rangle = -1$
 - Non-unitary???

Recovery of Unitarity

* Define J operator: unitary and Hermitian

$$J \equiv 1 + 2c^{\dagger}c$$

$$JcJ = -c \qquad JbJ = b$$

$$Jc^{\dagger}J = -c^{\dagger} \qquad Jb^{\dagger}J = b^{\dagger}$$

* Define J-inner product

$$\langle \mathcal{O} \rangle_J \equiv \langle J \mathcal{O} \rangle$$

* Positive-definite norm: $\langle cc^{\dagger} \rangle_I = 1$

Deformation of Spectrum

- * Based on the toy model, we expect that the extra D.o.F. would have divergent energy gap in $\lambda \to 0$ limit, and it will be decoupled at $\lambda = 0$.
- * However, the universal formula for the $T\overline{T}$ deformation tells us that there is no divergent energy gap in $\lambda \to 0$ limit.

$$E_n(L,\lambda) = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} E_n + \frac{4\lambda^2}{L^2} P_n^2} - 1 \right]$$

* Then, what is going on?

Hermiticity

* For the case of $T\overline{T}$ deformation, the analysis is very difficult because it is difficult to invert the relation for generic value of λ .

$$\pi_{+} = \frac{i}{2}\psi_{+} - \lambda\psi_{+}\psi_{-}\dot{\psi}_{-} + \lambda\psi_{+}\psi_{-}\psi_{-}'$$

* In large λ , one can invert it to express $\dot{\psi}$ in terms of others perturbatively.

New J-inner product

New J-Hermitian

H and P cannot be J-Hermitian in general.

- * The operator J is not uniquely defined.
 - ✓ In quantum mechanical toy model, one can use Bogoliubov transformation to define new J operator where Hamiltonian is J-Hermitian.

Non-Hermiticity

* In $T\overline{T}$ deformation of fermion, the operator J is not uniquely defined, and we can make either H or P J-Hermitian by Bogoliubov transformation. But, we cannot make both H and P J-Hermitian at the same time!

H and P cannot be J-Hermitian at the same time!!

- \rightarrow $|E,p\rangle$ is not orthogonal
- → Formula for deformed spectrum is not valid

$$E_n(L,\lambda) = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} E_n + \frac{4\lambda^2}{L^2} P_n^2} - 1 \right]$$

Choice of Energy-momentum Tensor

* From Noether Energy-momentum tensor

$$\mathcal{L} = \frac{i}{2}\psi_{+}\dot{\psi}_{+} + \frac{i}{2}\psi_{-}\dot{\psi}_{-} - \frac{i}{2}\psi_{+}\dot{\psi}_{-} + \frac{i}{2}(-\psi_{+}\psi'_{+}\psi_{-}\dot{\psi}_{-} + \psi_{+}\dot{\psi}_{+}\psi_{-}\psi'_{-})$$

* From Symmetric Energy-momentum tensor

$$\mathcal{L} = \frac{i}{2}\psi_{+}\dot{\psi}_{+} + \frac{i}{2}\psi_{-}\dot{\psi}_{-} - \frac{i}{2}\psi_{+}\psi'_{+} + \frac{i}{2}\psi_{-}\psi'_{+} + \frac{i}{8}(-\psi_{+}\psi'_{+}\psi_{-}\dot{\psi}_{-} + \psi_{+}\dot{\psi}_{+}\psi_{-}\psi'_{-})$$

$$-\frac{\lambda}{8}\psi_{+}\dot{\psi}_{+}\psi_{-}\dot{\psi}_{-} + \frac{\lambda}{8}\psi_{+}\psi'_{+}\psi_{-}\psi'_{-}$$

What is the guideline for "good" $T\bar{T}$ Deformation?

String action suggests answer.

$T\bar{T}$ Deformation of Free $\mathcal{N}=(1,1)$ SUSY Model

$T\bar{T}$ Deformation of $\mathcal{N}=(1,1)$ SUSY

$$\mathcal{N} = (1,1)$$
 SUSY

Deformation operator is not supersymmetric

Bose-Fermi Degeneracy

Deformed spectrum both boson and fermion

$$E_n(L,\lambda) = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} E_n + \frac{4\lambda^2}{L^2} P_n^2} - 1 \right]$$

 E_n : Undeformed Energy

 P_n : Undeformed Momentum

$$P_n(L,\lambda) = P_n(L)$$

Is there local expression for supercharge Q?

What is the deformed supersymmetry transformation?

$$\delta_+ \phi = -\frac{1}{2} \psi_+ + ?$$

$T\bar{T}$ Deformation of $\mathcal{N}=(1,1)$ SUSY Model

* Undeformed Lagrangian

$$\mathscr{L}_0 = 2\partial_{++}\phi\partial_{-}\phi + i\psi_{+}\partial_{-}\psi_{+} + i\psi_{-}\partial_{++}\psi_{-}$$

* Solve the flow equation

 $T^{\mu}_{\;\;
u}$ from Noether procedure

$$\partial_{\lambda} \mathcal{L} = \frac{1}{2} \epsilon_{\mu\nu} \epsilon^{\rho\sigma} T^{\mu}_{\ \rho} T^{\nu}_{\ \sigma}$$

$$\text{Solution:} \mathcal{L} = -\frac{1}{2\lambda} \left[\sqrt{1 + 2\chi} - 1 \right] + \frac{1 + \chi + \sqrt{1 + 2\chi}}{2\sqrt{1 + 2\chi}} (S_{++,=} + S_{-,++}) + \cdots$$

$$\chi \equiv -4\lambda \partial_{++} \phi \partial_{-} \phi, \quad S_{++,\mu} \equiv i\psi_{+} \partial_{\mu} \psi_{+}, \quad S_{-,\mu} \equiv i\psi_{-} \partial_{\mu} \psi_{-}$$

* Conjugate momenta

$$\pi = \frac{\delta \mathcal{L}}{\delta \dot{\phi}} \qquad \pi_{\pm} = \frac{\delta \mathcal{L}}{\delta \dot{\psi}_{\pm}}$$

Dirac Bracket

 $\triangleright T\overline{T}$ deformation of $\mathcal{N}=(1,1)$ model

2nd class constraint:

$$\pi_{+} - \frac{i}{4}\psi_{+} \left(1 - 2\lambda\pi\phi' + \sqrt{(1 + 2\lambda\pi^{2})(1 + 2\lambda\phi'^{2})} \right) - \lambda \left[\frac{1 + \lambda(\pi^{2} + \phi'^{2})}{4\sqrt{(1 + 2\lambda\pi^{2})(1 + 2\lambda\phi'^{2})}} + \frac{1}{4} \right] \psi_{+}\psi_{-}\psi'_{-} = 0$$

▶ Dirac brackets

$$\{\phi(x),\pi(y)\}_D = \delta(x-y) \quad \{\phi(x),\phi(y)\}_D = \{\pi(x),\pi(y)\}_D = 0 \quad \text{: same}$$

$$i\{\psi_{+}(x),\psi_{+}(y)\}_{D} = \frac{2\lambda\pi\phi' - 1 + \sqrt{(1 + 2\lambda\pi^{2})(1 + 2\lambda\phi'^{2})}}{\lambda(\pi + \phi')^{2}}\delta(x - y) + \cdots$$

$$i\{\psi_{+}(x),\psi_{-}(x)\}_{D} = -\frac{i\lambda}{\sqrt{(1+2\lambda\pi^{2})(1+2\lambda\phi'^{2})}}(\psi_{+}\psi_{-})'\delta(x-y)$$

$$\{\phi(x),\psi_+(y)\}_D = \frac{-2\lambda\pi^2 - 1 + \sqrt{(1 + 2\lambda\pi^2)(1 + 2\lambda\phi'^2)}}{2(1 + 2\lambda\pi^2)(\pi + \phi')}\psi_+\delta(x - y)$$

Supercharges

Supercharges

upercharges
$$Q_{+}^{1} = \int dx \; \psi_{+}(\pi + \phi') \qquad \qquad Q_{-}^{1} = \int dx \; \psi_{-}(\pi - \phi') \\ \dot{\phi} = \frac{\pi \sqrt{1 + 2\lambda \phi'^{2}}}{\sqrt{1 + 2\lambda \pi^{2}}} + \dots \neq \pi$$

$$\{Q_{\pm}^1, Q_{\pm}^1\}_D = \{Q_{\pm}^1, H\}_D = \{Q_{\pm}^1, P\}_D = 0$$

Hamiltonian and momentum

$$H = \frac{i}{4} \{Q_{+}^{1}, Q_{+}^{1}\}_{D} + \frac{i}{4} \{Q_{-}^{1}, Q_{-}^{1}\}_{D}$$

$$P = \frac{i}{4} \{ Q_{+}^{1}, Q_{+}^{1} \}_{D} - \frac{i}{4} \{ Q_{-}^{1}, Q_{-}^{1} \}_{D}$$

Global Symmetry

Global symmetry

Shift scalar field
$$\phi(x)$$
 \longrightarrow $\phi(x) + a$ $\mathbb{P}^2 = \frac{2\pi}{L} \int dx \, \pi$ Shift fermion $\psi_{\pm}(x)$ \longrightarrow $\psi_{\pm}(x) + \eta_{\pm}$ $Q_{\pm}^2 = -\frac{8\pi i}{L} \int dx \, \pi_{\pm}$ a, η_{+} : constants

Commute with Hamiltonian and momentum

$${Q_{\pm}^2, H}_D = {\mathbb{P}^2, H}_D = {Q_{\pm}^2, P}_D = {\mathbb{P}^2, P}_D = 0$$

SUSY and Global Symmetry Algebra

$$\{Q_{\pm}^{1},Q_{\pm}^{1}\}_{D}=-2i(H\pm P)$$
 SUSY
$$\{Q_{+}^{1},Q_{-}^{1}\}_{D}=0$$

$$\{Q_+^1, Q_-^1\}_D = 0$$

Global
$$\{Q_{\pm}^2,Q_{\pm}^2\}_D = -\frac{16\pi^2i}{L} - \frac{16\pi^2i\lambda}{L^2}(H\mp P)$$

$$\{Q_{\pm}^2,Q_{\pm}^2\}_D = 0$$

$$\{Q_+^2, Q_-^2\}_D = 0$$

$$\{Q_{\pm}^1, Q_{\pm}^2\}_D = -2i\left(\mathbb{P}^2 \pm \frac{4\pi^2}{L^2}\mathbb{W}^2\right) \qquad \mathbb{W}^2 \equiv \frac{L}{2\pi} \oint dx \,\phi'$$

$$\{Q_{\pm}^1, Q_{\mp}^2\}_D = 0$$

$$\mathbb{W}^2 \equiv \frac{L}{2\pi} \oint dx \, \phi'$$

Two Approaches for Relation to String Action

- * Jorjadze-Theisen approach
 - \checkmark Give deformed spectrum (\widetilde{H} in the previous slide) explicitly.
 - ✓ Some issues for SUSY (kappa sym fixing in GS superstring)
 - \checkmark λ appears as alpha-prime parameter
- * Sfondrini et al and Frolov's approach
 - ✓ Give the deformed Hamiltonian (or equivalently Lagrangian)
 - \checkmark We don't know how to derive $\overset{\smile}{H}$.
 - \checkmark λ appears as deformation of lightcone coordinates

Green-Schwarz Action

* $\mathcal{N}=2$ Green-Schwarz Action for 3D target space

$$\mathcal{L}_{GS} = -\frac{1}{2} \gamma^{\alpha\beta} \Pi^{\mu}_{\alpha} \Pi^{\nu}_{\beta} G_{\mu\nu} - i \epsilon^{\alpha\beta} \partial_{\alpha} X^{\mu} (\bar{\Psi}_{+} \Gamma^{\nu} \partial_{\beta} \Psi_{+} - \bar{\Psi}_{-} \Gamma^{\nu} \partial_{\beta} \Psi_{-}) G_{\mu\nu} - \epsilon^{\alpha\beta} (\bar{\Psi}_{+} \Gamma^{\mu} \partial_{\alpha} \Psi_{+}) (\bar{\Psi}_{-} \Gamma^{\nu} \partial_{\beta} \Psi_{-}) G_{\mu\nu}$$

- ✓ WZ term: topological
- ✓ spacetime supersymmetry
- ✓ Ψ_{\pm} : two component Majorana spinor

"Dictionary"

Shifted Light-cone coordinates and target space metric

$$X^{+} \equiv \left(\frac{1}{2} - \Lambda\right) X^{1} + \left(\frac{1}{2} + \Lambda\right) X^{0} \qquad X^{-} \equiv X^{1} - X^{0}$$

$$ds^{2} = 2\Lambda (dX^{-})^{2} + 2dX^{+}dX^{-} + (dX^{2})^{2}$$

$$T\overline{T} \text{ Deformation parameter } \Lambda$$

Condition $\Lambda \ge 0$ is required to demand that X^+ to be time-like or null

→ 3D target coordinates and spinor

$$X^+ = t$$
 : worldsheet time in $T\overline{T}$

$$X^{-}$$

$$X^2 = \phi$$
 : scalar field in $T\overline{T}$

$$\Psi_{\pm} = \frac{1}{2} \begin{pmatrix} \psi_{\pm} \\ 0 \end{pmatrix}$$
 fermion in $T\overline{T}$

gauge fixing of kappa symmetry

Solving Constraints

 \triangleright Light-cone gauge : $X^+ = t$

Charge p_+ for translation of target coordinate X^+ = Hamiltonian of $T\overline{T}$

ightharpoonup Discrete Light-cone quantization : X^- is compactified non-trivial topological charge for winding mode

$$\mathbb{W}^- = \oint d\sigma \; \partial_\sigma X^- = - \, mR \qquad \text{quantized}$$

ightharpoonupIdentification of topological charge and momentum in $T\overline{T}$

$$P = -\frac{2\pi}{L}p_-\mathbb{W}^- \quad \text{:quantization of operator P in } T\overline{T} \text{ deformation}$$
 level-matching condition

SUSY and Global Symmetry Algebra

$$\{Q_{\pm}^{1},Q_{\pm}^{1}\}_{D}=-2i(H\pm P)$$
 SUSY
$$\{Q_{+}^{1},Q_{-}^{1}\}_{D}=0$$

$$\{Q_+^1, Q_-^1\}_D = 0$$

Global
$$\{Q_{\pm}^2,Q_{\pm}^2\}_D = -\frac{16\pi^2i}{L} - \frac{16\pi^2i\lambda}{L^2}(H\mp P)$$

$$\{Q_{\pm}^2,Q_{\pm}^2\}_D = 0$$

$$\{Q_+^2, Q_-^2\}_D = 0$$

$$\{Q_{\pm}^1, Q_{\pm}^2\}_D = -2i\left(\mathbb{P}^2 \pm \frac{4\pi^2}{L^2}\mathbb{W}^2\right) \qquad \mathbb{W}^2 \equiv \frac{L}{2\pi} \oint dx \,\phi'$$

$$\{Q_{\pm}^1, Q_{\mp}^2\}_D = 0$$

$$\mathbb{W}^2 \equiv \frac{L}{2\pi} \oint dx \, \phi'$$

N = 2 SUSY of 3D target space

$$Q_{\pm}^{1}$$
 : $\mathcal{N} = (1,1)$ supercharge

: fermionic global charge

$$\{Q_a^{\alpha}, Q_b^{\beta}\}_D = -2i\delta_{ab}(\Gamma^{\mu}C)^{\alpha\beta}\mathbb{P}_{\mu} - \frac{2i}{2\pi\ell_s^2}\sigma_{ab}^3A^{\alpha\beta}$$

topological charge from WZ term

Hamiltonian

$$\Gamma^{\mu}C\mathbb{P}_{\mu} = \begin{pmatrix} H & \mathbb{P}^2 \\ \mathbb{P}^2 & \frac{8\pi^2}{L} + 2\Lambda H \end{pmatrix}$$

$$\Gamma^{\mu}C\mathbb{P}_{\mu} = \begin{pmatrix} H & \mathbb{P}^{2} \\ \mathbb{P}^{2} & \frac{8\pi^{2}}{L} + 2\Lambda H \end{pmatrix} \quad A = \Gamma_{\mu}C \oint d\sigma \ \partial_{\sigma}X^{\mu} = \frac{L^{2}}{4\pi^{2}} \begin{pmatrix} P & \frac{4\pi^{2}}{L^{2}}\mathbb{W}^{2} \\ \frac{4\pi^{2}}{L^{2}}\mathbb{W}^{2} & -2\Lambda P \end{pmatrix}$$

 $\triangleright \mathcal{N} = 2$ SUSY of 3D target space

$$Q_{\pm}^{1}$$
 : $\mathcal{N} = (1,1)$ supercharge

 Q_{\pm}^{2} : fermionic global charge

$$\{Q_a^{\alpha}, Q_b^{\beta}\}_D = -2i\delta_{ab}(\Gamma^{\mu}C)^{\alpha\beta}\mathbb{P}_{\mu} - \frac{2i}{2\pi\ell_s^2}\sigma_{ab}^3A^{\alpha\beta}$$

topological charge from WZ term

$$\Gamma^{\mu}C\mathbb{P}_{\mu} = \begin{pmatrix} H & \mathbb{P}^{2} \\ \mathbb{P}^{2} & \frac{8\pi^{2}}{L} + 2\Lambda H \end{pmatrix} \qquad A = \Gamma_{\mu}C \oint d\sigma \ \partial_{\sigma}X^{\mu} = \frac{L^{2}}{4\pi^{2}} \begin{pmatrix} P & \frac{4\pi^{2}}{L^{2}}\mathbb{W}^{2} \\ \frac{4\pi^{2}}{L^{2}}\mathbb{W}^{2} & -2\Lambda P \end{pmatrix}$$

: bosonic global charge

 $\triangleright \mathcal{N} = 2$ SUSY of 3D target space

$$Q^1_{\pm}$$
 : $\mathcal{N} = (1,1)$ supercharge

 Q_{\pm}^{2} : fermionic global charge

$$\{Q_a^{\alpha}, Q_b^{\beta}\}_D = -2i\delta_{ab}(\Gamma^{\mu}C)^{\alpha\beta}\mathbb{P}_{\mu} - \frac{2i}{2\pi\ell_s^2}\sigma_{ab}^3A^{\alpha\beta}$$

topological charge from WZ term

$$\Gamma^{\mu}C\mathbb{P}_{\mu} = \begin{pmatrix} H & \mathbb{P}^{2} \\ \mathbb{P}^{2} & \frac{8\pi^{2}}{L} + 2\Lambda H \end{pmatrix} \qquad A = \Gamma_{\mu}C \oint d\sigma \ \partial_{\sigma}X^{\mu} = \frac{L^{2}}{4\pi^{2}} \begin{pmatrix} P & \frac{4\pi^{2}}{L^{2}}\mathbb{W}^{2} \\ \frac{4\pi^{2}}{L^{2}}\mathbb{W}^{2} & -2\Lambda P \end{pmatrix}$$

: momentum

$$\triangleright \mathcal{N} = 2$$
 SUSY of 3D target space

$$Q_{\pm}^{1}$$
 : $\mathcal{N} = (1,1)$ supercharge

 Q_{\pm}^{2} : fermionic global charge

$$\{Q_a^{\alpha}, Q_b^{\beta}\}_D = -2i\delta_{ab}(\Gamma^{\mu}C)^{\alpha\beta}\mathbb{P}_{\mu} - \frac{2i}{2\pi\ell_s^2}\sigma_{ab}^3A^{\alpha\beta}$$

topological charge from WZ term

$$\Gamma^{\mu}C\mathbb{P}_{\mu} = \begin{pmatrix} H & \mathbb{P}^{2} \\ \mathbb{P}^{2} & \frac{8\pi^{2}}{L} + 2\Lambda H \end{pmatrix} \quad A = \Gamma_{\mu}C \oint d\sigma \, \partial_{\sigma}X^{\mu} = \frac{L^{2}}{4\pi^{2}} \begin{pmatrix} P & \frac{4\pi^{2}}{L^{2}} \mathbb{W}^{2} \\ \frac{4\pi^{2}}{L^{2}} \mathbb{W}^{2} & -2\Lambda P \end{pmatrix}$$

topological chargefor compactified boson

Comments

* Partially broken rigid SUSY

$$\{Q_{\pm}^2, Q_{\pm}^2\}_D = -\frac{16\pi^2 i}{L} - \frac{16\pi^2 i\lambda}{L^2} (H \mp P)$$

- ✓ Due to topological charge
- \checkmark fermionic global symmetry in $T\overline{T}$ deformation
- * BPS States
 - $\checkmark~$ BPS states from the point of view of 3D $\mathcal{N}=2$ SUSY
 - \checkmark Protected along $T\overline{T}$ deformation

$$E = \frac{L}{2\lambda} \left[\sqrt{1 + \frac{4\lambda}{L} \left| P - \frac{1}{L} p_m p_w \right| + \frac{2\lambda}{L^2} \left(\frac{L^2}{4\pi^2} p_m^2 + \frac{4\pi^2}{L^2} p_w^2 \right) + \frac{4\lambda^2}{L^2} P^2} - 1 \right]$$

Future Works

- * More systematic way to find the map perturbatively. cf [Theisen, Jorjadze, 2020]
 - ✓ It will be useful to evaluate the deformation of correlation functions.
- * It is tempting to relate extra negative norm state with the other branch of the deformation of spectrum which is divergent in $\lambda \to 0$ limit.

$$E_n(L,\lambda) = \frac{L}{2\lambda} \left[-\sqrt{1 + \frac{4\lambda}{L}E_n + \frac{4\lambda^2}{L^2}P_n^2} - 1 \right]$$

- ✓ But, it might be "wishful" thinking.
- * Further investigation on the relation to string actions.
 - ✓ Other winding sectors, other backgrounds

Thank You

