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Motivation



TT Deformation

* Flow equation for TT deformation

1
0,ZL = Eeﬂyepo’T/"pT”G

apCctp
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Features 1: Deformed Spectrum

uv
% Universal formula for 77T Deformed Spectrum
L 42 4%
E(L,A) = — l|+—FE +—P; —1
2 L L?
P(L,2) = P(L)
E, : Undeformed Energy
IR

P, 1 Undeformed Momentum

apCctp



Figure 2: TT Deformed Lagrangian

. 1
x Flow equation 9,7 = S 6w T

v EMT on RHS: Derivative of deformed Lagrangian w.r.t. field
v This leads to differential equation of the Lagrangian

v Can be solved perturbatively in principle. Mostly, we can find exact
solutions.

v Initial condition: Z[1 =0] = % ndeformed

s/ €.g. Deformation of free scalar field: #= —2% \/1+2z(—4}2+¢’2) ~1

* This is related to Nambu-Goto action for 3D target space with “static gauge”
v usuadlly difficult to quantize the NG action

* Relation to dynamical coordinate transformation and 2D gravity

3PCEP




Bridge between Lagrangian and Spectrum

* From the spectrum,

L 42 4%
E(L,A) = — |4/1+—E,+—P; — 1
22 L L2

one might guess the deformed Hamiltonian as follow

L 42 42

* Is it too good to be true?

* “semi-classical” derivation of the above Hamiltonian from the string
[ Theisen, Jorjadze, 2020]: “gauge choice”

* What is the concrete relation between TT deformed Lagrangian and the
above Hamiltonian?

5

T i L 4 472
\/1+2/1(—¢2+¢2)—1] ﬁ H=§[\/I+TH(O)+FP(%)_1]

1
22
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Take-home Messages



Equivalence of Two Hamiltonians

* From TT deformed Lagrangian

. 1 o 1 T
v Flow equatlon. 0,<L = EGWGP T™,T", & = -5 \/1+2A(—¢2+¢2)— 1]
v Legendre Transformation to Hamiltonian Density

=2 One integral for Hamiltonian

L 4 4
c E(L,J) = — |4/l +—E,+—P> -1
y From deformed Energy: £, > \/+L P

aht ot L 4 42%
/ mMIignt conjecture H=2—/1 1+TH(O)+—P(O)—1

L2

v One integral inside square-root
=> Many integrals in Taylor's expansion.

apctp



Noether vs Metric Variation?

* Two ways to evaluate Energy—-momentum tensor

v Noether procedure: EMT is not symmetric in general.
e.g. fermion

v Variation w.r.t. metric: EMT is symmetric by construction.

v Usudlly, they are related by the improvement term.

x When we solve flow equation 0,% = %eﬂyePGTﬂpT”a, two EMT give
different solutions.

v/ Are they equivalent? (e.g. field redefinition?)

. i i
v No. doubling of d.o.f. L= UG Y+ Ay

OPCEP



TT Deformation and SUSY

% TT deformation 0, = %eﬂyePGTﬂpTVGI Not SUSY completed

v/ Does TT deformation break SUSY?
(perturbative check by [Giraldo-Rivera et al, 2019]

v If not, what is the deformed supersymmetry transformation
and the deformed supercharge Q7

apctp



TT Deformation of Free Scalar Field
and Spectrum



Undeformed Free Scalar Field

* Undeformed Lagrangian

L, 1,
L=

x From Lagrangian (density) to Hamiltonian (density) by H=%=q§

* Hamiltonian and Momentum

/ H(O) = %de [H2 + ¢,2] = %2 [a_kak + C_I_k(?k] == H+ + H_
k

’ 7 = =

k

apCctp



TT Deformation of Free Scalar Field

* Deformed Lagrangian

/ 3:-% \/1+2A(—¢2+¢/2)—1]

* From Lagrangian (density) to Hamiltonian (density) by
e ¢

Mm="" =
O \J1+ 20~ + )

* Hamiltonian and momentum of Deformed Theory

1 - 1 2 1 2 2 N2
4 H=2—/1de 1+4/1<5H +5¢>+4,1(H¢) —1

J/ P= [dx Mg’

apctp



Canonical Transformation

* Tempting to conjecture the deformed Hamiltonian (tilde)

H —EZa a
— L 42 a2 oL
H=—|1/1+—Hgp+—P% —1| =H, +H_ + —H,H_+ --
/ 2] L (0) 2 = (0 + + T
H_=zZa_kak

* Compare with the previous Hamiltonian

1
LT,
20/ 1

A, = —\/mikey, +
1

L
H=—J dx
4 27 ],

1 2 1 2 2 2 A
1+ 40 (=T +—¢? ) + 42210 — 1 | = H[A, A] 1
2 2 A, = —\/zikd_, +——TII_,

T

* For this, we need transformation from Ay, A, to o , @, such that
H[A,A] = Hla, a]

v non-local: one integral vs many integrals

v/ canonical: preserve canonical Poisson relations

OPCEP



Requirements

* The requirement for the map
2

A, = A AD [, d] + 2= AD[a, a] + 63

k—ak+L2 y [05,05]+L4 L [a, a]l + O(A°)
T =gt A0+ A :
P = ak+L2 B [a,a]+L4Ak la, a]l + O(4°)

v Canonicaljra_nsformation
A A = A Al =0g0 . [Ap
lag, a,] = @y, a,] = Oy Lo

A]1=0
a,] =0

They lead to inhomogeneous differential equations for the map.

v Hamiltonian qu momentum
H[A,A] = H[a, a]
P[A,A] = Pla,a]

From them, one can choose homogeneous solution.




Results

2
in: A, = LA(I) 7] + — A1 7 O()>
% Solution: A, = oy + la, & + la, a] + O(4°)
12 k [4 k

AV =27 ) . _,_0_a

/ k e~ ]"—I—S —r—=sS""—r—"—S
r+s#0
) ) k—r—s—u—v S

Ak = 2n°k Z A r—s—u—v Xy X X _ A _g

/ 5oty (u+v)(r+5)
u+i/7é0,r+s¢0 |
—4rk a_,_,a_,0_ L(H, + H_ + 47’k Aoy LA O
;u-FVku (+ ) r,;u,vr+‘9k
u+v#0 r+s#0

* This is calculated at classical level (up to order 6(4?)).

* At quantum level, it is confirmed up to order O(1)

apcCtp



TT Deformation of Free Fermion
and Spectrum



Free Fermion Case

* One can also repeat a similar analysis for the free fermion case.

v The final result is similar, but the intermediate procedure is
qualitatively different.

v/ worthwhile to present for pedagogical reason.

* Free Fermion

A
V' L= W+ Sy = Swyl Syl

* Conjugate momentum?

1
<

/ m=c—=2w. and ==2==—y I Thereis no i, on the RHS

o i
A S 2

o i
s/ forms the second class constraints: @, = T Y

apCtP



Dirac Bracket

x Due to the 2nd class constraints %. =ﬂi—%l//i, we need to evaluate
Dirac bracket.

vV 6.6, =-i and (€, %_}=0

v For example,

{l//+(x1)v l//+(x2)}D =0- {l//+(x1)a Cg+}%:—-l|-{(g+a l//+(X2)} - = ié(-xl _ X2)

apCtp



TT Deformation of Free Fermion

* For fermion case, the solution of flow equation is truncated.

v Due to the fermi statistics, non-vanishing term is very limited.
c.g. l//+a-|+l/j+l/j—a=l/j—’ l//+a=l/j+l/j—a—|+l//—

v This is because Noether procedure does not produce higher derivative
terms
* Deformed Lagrangian

A B A A ;o , :
/ L = 51//_'_1//_'_ + 51//_1//_ — 51//_,_1//_,_ + El//_l//_ + 5 (—l//+l//+l//_W— + V’+W+V/—l//—)

* Conjugate momentum?

J o me—— =ty +tyyy and = =2Z-Ly Ly @ There is no Y, either.

v/, forms the second class constraints:

I A I A

€ =nm - SV~ ?/mlf_l/f’_ , Gr=71_-— Syt ?/f+l//’+l/f_




Dirac Bracket

* Dirac bracket of the deformed theory.

i{w, (), ()} = (1 + AS_ + 22°S,5 )6(x; — x,)
Se = YLy

Iy (), w_(x) } p = — ALy + w oyl )o(x; — x5)

* Hamiltonian of the deformed theory is

l : :
s H= Ejdx[%w; —y_y'| ¢ of the same form as free Hamiltonian

v/ no explicit 4 dependence

* Then, how does it produce the deformed spectrum?

apCtP



Comparison

* Scalar field case

v/ Deformed Hamiltonian has A dependence

v The algebra of phase space variables is not changed.
. canonical transformation

* Fermion case

v/ Deformed Hamiltonian does not have explicit 4 dependence

v/ The algebra of phase space variables is changed.

v Not canonical transformation.

v/ This generates 4 dependence for the spectrum



Transformation to Free Oscillators

* Want: Transformation from TT deformed Hamiltonian

A

(), y (o) p = +AS_ + 2/125+S_)5(x1 — Xy)
iy, (), w_(x) }p = — ALy +w,w)o(x — xp)

to Hamiltonian in terms of free oscillators by, I_Qk

— L 42 4% 42

{bk7 bq} — {Bka Bq} — 5k+Q,() ’ {bk9 Bq} — O

apctp "



Requirement

* The requirement for the map

A . - A _
Vi = b+ Vb, b1+ 004 7 = b+ 256 b1+ 06

v Algebra

(), ()t =+ A5 + 2/125+S_)5(x1 — X)
iy (), w_(xp) } p = — ALy + wwl)o(x) — x,)

{bka bq} — {Bka Eq} — 5k+Q,O ’ {bka Bq} — O

They lead to inhomogeneous differential equations for the
map.

v Hamiltonian g\n/d momentum .
Hly,y] = H[b, D] Ply,y]l = P[b,b]

From them, one can choose homogeneous solution.



Results

A ﬂ) 1. 2
% Solution: y, = b +—y, ’[b,b] + O(A7)

L2
k—r—s)s _ - _
<1>—2 ( b bb. :—nb b_b. :
/ T Z r+ s k—r—s r's ﬂkzr —r%r
r+s;£0

* This is confirmed at classical level as well as quantum level up to
order O(1).

OPCEP



Negative Norm States



What happens
with Symmetric Energy Momentum Tensor?

* The deformed Lagrangian (by Noether EMT) is

v Z=iyoy +iyo .y +1 (—l//+a LWL W Oy +y, oy 0 _H_I,U_)

v Coefficient of quartic term is special in that it does not
generate a term y,y y_yr_

* The symmetric EMT by metric variation has different coefficients of
the quartic term.

v And therefore, this produces the term yw y y yr_

* What's wrong with this term?

OPCEP



TT Deformation of Free Fermion

* From Noether Energy-momentum tensor

A T o o
= Sy = S oyl (—wwlwvr_ + yw oy )

* From Symmetric Energy-momentum tensor

i i i i 32 o o
L= S+ S = S Syl (—wwlwvr + wywy! )

A

_ §W+l/./+l//—y”—

A

gl/f+l/f’+t/f_t/f’_

apCctp



Emergent D.o.F.

¥ TT deformation of free fermion:

I I [ o A . |
Z = El//+l//+ + El//—l//— — El//+l//+ + 5W—W{ - §W+l//+l//—l//—

* Conjugate momentum

5 i | A ,
ny = S — EW+ - gl//#//_*//_ .
Vs | Not constraints any more
58S i | ,
n = — = — —_
- = i SY- [ VY

v RHS contains ¥_: Formally, it can be inverted. And it is not constraint
any more.

v D.o.F, which would have been removed, is now coupled to the system.

v Doubling of fermionic D.o.F. : symplectic fermion [A. LeClair and M. Neubert,
2007]
cf) Ostrogradsky instability

apctp



Feature 3 of 7T Deformation 2

Uv

w No new D.o.F emerges

*

IR

apctp



3pCkp

Emergent Extra D.o.F.

uv

1
0, = Eeﬂyep"TﬂpT’/ o

1, from Noether procedure

"Usually” NO emergent D.o.F

1, from Metric variation

“Usually” emergent D.o.F with

negative norm



Toy Model for Negative Norm State

* Quantum mechanical toy model
A _ L
L = SVY = Sy mipy — Ay

% Phase space: VY.¥,7,7 @ ol ) b

no constraints

E 4

* Spectrum

c’10) bTcT|0)
—==10) b"|0)
)

* Negative norm: (0|cc™|0) =—1

v/ Non-unitary???

apCctp



Recovery of Unitarity

* Define J operator: unitary and Hermitian

JoJ =—c¢ JbJ = b
J=1+2c"c

Jc'] == Jb'J] = b'
* Define J-inner product

(0), =(JO)

* Positive-definite norm: (cc™y, =1

apCctp



Deformation of Spectrum

* Based on the toy model, we expect that the extra D.o.F. would have
divergent energy gap in A — 0 limit, and it will be decoupled at 4 = O.

% However, the universal formula for the TT deformation tells us that there is
no divergent energy gap in 4 — 0 limit.

L 4 4,
E(L,A) = — |{/1+—E,+—P; — 1
22 L L2

* Then, what is going on?

apctp



Hermiticity

% For the case of TT deformation, the analysis is very difficult because it is

difficult to invert the relation for generic value of A.
l

T = SV~ ALY+ Ay

* In large A, one can invert it to express i in terms of others perturbatively.

New J-Hermitian

.

H and P cannot be J-Hermitian in general.

* The operator J is not uniquely defined.

v' In quantum mechanical toy model, one can use Bogoliubov transformation
to define new J operator where Hamiltonian 1s J-Hermitian.

apctp



Non-Hermiticity

% In TT deformation of fermion, the operator J is not uniquely defined, and
we can make either H or P J-Hermitian by Bogoliubov transformation. But,
we cannot make both H and P J-Hermitian at the same time!

H and P. cannot be J-Hermitian at the same time!l

= | E,p) is not orthogonal

= Formula for deformed spectrum 1s not valid

L 42 42%
E(L,2) = — [4/1+—E,+—PI -1
22 L L2

apctp



Choice of Energy-momentum Tensor

* From Noether Energy-momentum tensor

%9
i 0 ' Q y) o , ,
Z = SVl WY = W_ > (—wwlhwi_ + iy y!)

* From Symmetric Energy-momentum tensor

l

i i E o ag#3d o o
L= SWr Y = Syl _i 56 = (—wwlhwoi_ + iy y!)

e

A A

_§V/+l/./+‘//—l/./— + gl//+l//_'|_l//_l//'_

apCctp



What is the guideline for
"good” TT Deformation?

String action suggests answer.



TT Deformation of
Free /J = (1,1) SUSY Model



TT Deformation of 4 = (1,1) SUSY

Does TT deformation preserve
A = (1,1) SUSY?

: Deformation operator is
not supersymmetric

A = (1,1) SUSY

apCctp



Bose-Fermi Degeneracy

Deformed spectrum both boson and fermion

I 4) 42 , E, : Undeformed Energy
E(L,2) = — [1/1+—E, +—P2— 1
24 L L2

P, Undeformed Momentum

P,(L.2) = P,(L)

0000-

TT Deformation

apCctp



[s there local expression for
supercharge Q7

What is the deformed
supersymmetry transformation?

1

5+¢:—EW+ + )



TT Deformation of 4 = (1,1) SUSY Model

* Undeformed Lagrangian

Ly = 20,¢0_¢p+ iy oy, + iy 0,y

* Solve the flow equation
1", from Noether procedure

1
/ 0/13 — EGﬂUG’DGTﬂpTUG

. | l+y++/1+2
Solutlon15f=——[\/1+2;(—1]+ (So 4S5 )+ o
/ 2 0T+ "

x E—440,¢0_¢, S, , =iy oy, S_,= iy oy
* Conjugate momenta

0L A
_ T, =

_5_q5 T Oy

/ T

apctp



Dirac Bracket

2TT deformation of /" = (1,1) model

2nd class constraint:

i , 1+ A7%+ ¢?) 1
- 1 =2A7nd’ ++/ (1 + 2473 (1 + 24 2)—1 + — . =0
7, 41//+< g \/( 7)( ) [4\/(1+2M2)(1+2ﬂ¢’2) 4]1//+t/fl//

2 Dirac brackets

19, 7(M)ip = olx—=y) 1P, p(V)}p = (#(x), z(y)}p =0 = same

2ird — 1 + \/ (1 + 24701 + 24¢2)
AZACIRTAG Tt ) O(x = y) + -+
i
O (T st
Hy, (o), y_ (0} p NS (pw_)'o(x —y)

24> = 1+ /(1 + 22201 +220)7)
2(1 + 2472 (7 + ¢")

{px), y,(W}p = W, 0(x —y)




Supercharges

2 Supercharges
0 = de W, (7 + ') 0! = de w_ (7 —¢')

m\/ 1 +24¢*
&&: \/ _|_;é71-

V1 + 2472

{Q—Il—’ Ql}D — {QLH}D = {Qi,P}D =0
& Hamiltonian and momentum
H = (0L 0!}, + (0% 0!}
4 +>X4+JD 4 ¥ ID

p — i{QL QL}D—Q{QL o,

apctp



Global Symmetry

2 Global symmetry
Shift scalar field ¢kx) — @) +a ?:1?:::~;:-::i;::-;:-::?;:?:i-:i::3~:i~:?~;i-i~:i?::i-:i-:i%}é}i{f:i}:?;:-'-'- P? = — [d X
Shift fermion pe(x)  — ye(X) + 1. 3;};:?:i-;ii;:?:i-;:?;:?:I-:?;:1-11-;‘31?:':;2'-;:?1?13g}%ﬂfﬁ{:ﬁ;:?:i-’f- f=—— Jd X Ty

a, N4 - constants

2 Commute with Hamiltonian and momentum

{01.H}p = {PLH}p = {QL.P}p = {PLP}, =0

apCctp



SUSY and Global Symmetry Algebra

{0i,0:}p =—2i(H*P)

SUSY o
{Q+a Q—}D =0

1672 16724
H

{05, 0%)p =— -
Global L L
{QJZF’ QE}D =0
A7 L
(01,02}, =—2i (P2+L_”2w2> W2 = 2—ﬂ<J>dx ¢’
{01,021, =0

apctp



Two Approaches for Relation to String Action

* Jorjadze-Theisen approach
v Give deformed spectrum (ﬁ in the previous slide) explicitly.
v Some issues for SUSY (kappa sym fixing in GS superstring)

v/ A appears as alpha-prime parameter

* Sfondrini et al and Frolov's approach

v Give the deformed Hamiltonian (or equivalently Lagrangian)

v We don’t know how to derive ﬁ

v/ A appears as deformation of lightcone coordinates

apCtP



GGreen-Schwarz Action

*x N =2 Green-Schwarz Action for 3D target space

1 o I v I v af QL I v

Log =— Ey“ﬁngngc;w — 0, X*(Y, Y0¥, — W _T70,¥_)G,, — e"/(¥ 1", ¥ )(¥_T"0,¥Y_)G,,
v/ I =9 X'+ iV I¥,¥, +i¥Y "0, ¥_
v WZ term: topological
v/ spacetime supersymmetry

v Y. ! two component Majorana spinor

apctp



“Dictionary”

+ Shifted Light-cone coordinates and target space metric

X+E<%—A>Xl+<%+AQX°\X‘EX1—XO -
— TT Deformation parameter A

ds® = 2A(dX7)* +2dX dX™ + (dX?)?

S~

Condition A = 0 is required to demand that X* to be time-like or null

+ 3D target coordinates and spinor

g\Light—cone gauge

Xt =t : worldsheet time in TT (_- fermion in 11
1 [y
_ p, = L (V=
« =3(%)
2 _ . . . — Z’
=9 - sealar field in 11 gauge fixing of kappa symmetry

apctp



Solving Constraints

B Light-cone gauge : X = 1

Charge p, for translation of target coordinate X™ = Hamiltonian of TT

2 Discrete Light-cone quantization : X~ is compactified

non-—trivial topological charge for winding mode

W™ = ¢pdo 0, X~ =—mR .
J unantlzed
2 Identification of topological charge and momentum in T
27 L R .
P =——p_W~ :quantization of operator P in 1T deformation

L
Q level-matching condition

apctp



SUSY and Global Symmetry Algebra

{0i,0:}p =—2i(H*P)

SUSY o
{Q+a Q—}D =0

1672 16724
H

{05, 0%)p =— -
Global L L
{QJZF’ QE}D =0
A7 L
(01,02}, =—2i (P2+L_”2w2> W2 = 2—ﬂ<J>dx ¢’
{01,021, =0

apctp



3D Target Space SUSY

ol ./ =(1,1) supercharge
2N =2 SUSY of 3D target space

Qi : fermionic global charge

21
3 pap
2nl’? Oab’t

(pological charge from WZ term
Hamiltonian

@ Pz L2 ( P 4—]22W2\
Mep, = (5 A=T Cjﬁd(; o xn = L L
P T ~+ 2 H 4 4

T2 | A2 ~2AP

(02, 00))y = 2i5,(T"C)7P,, -

apCctp



3D Target Space SUSY

ol ./ =(1,1) supercharge
2N =2 SUSY of 3D target space

Qi : fermionic global charge

21
3 pap
2nl’? Oab’t

(pological charge from WZ term
Ho @
F”‘C[P’ﬂ = <

L2 ( P 4—]T2W2
.2 A = FﬂCEFd(f 0, X' = —| | o
T + 2AH 471'2 4m
)

: bosonic global charge

(02, 00))y = 2i5,(T"C)7P,, -

apCctp



3D Target Space SUSY

ol ./ =(1,1) supercharge
2N =2 SUSY of 3D target space

Qi : fermionic global charge

21
3 pap
2nl’? Oab’t

(pological charge from WZ term

( 2
H P? 2| () Zw
[*CP, = 2 A=10C0doo Xt = —
P\ P2 E 4 2AH : ’

472 | 4=

(02, 00))y = 2i5,(T"C)7P,, -

- momentum

apCctp



3D Target Space SUSY

ol ./ =(1,1) supercharge
2N =2 SUSY of 3D target space

Qi : fermionic global charge

21
3 pap
2nl’? Oab’t

(pological charge from WZ term

( 20\
— A=FC§Fd00 X# =
: : ? 4% | 4z’ _
\ 2AP

. topological charge
for compactified boson

(02, 00))y = 2i5,(T"C)7P,, -




Comments

* Partially broken rigid SUSY
167% 16774

L L?

{0%,05))p =- (HFP)

v/ Due to topological charge

v fermionic global symmetry in TT deformation

* BPS States
v/ BPS states from the point of view of 3D /4 = 2 SUSY

v/ Protected along TT deformation

E_L 1+4/1 +2,1 L2 ), 4z* 4,12P2 |
Y] L L2 4n2p 72 v 12

1
P — zpmpw

apCtp



Future Works

* More systematic way to find the map perturbatively.
cf [Theisen, Jorjadze, 2020]

v It will be useful to evaluate the deformation of correlation
functions.

* [t is tempting to relate extra negative norm state with the other branch
of the deformation of spectrum which is divergent in A — O limit.

L 42 42%
E(L,) =—|-/l+—E,+—P; -1
22 L L

v/ But, it might be “wishful” thinking.
* Further investigation on the relation to string actions.

v/ Other winding sectors, other backgrounds
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