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T T deformation Zamolodchikov ’04

S =

∫
dxdt L , ∂L

∂α
= −T T

T T ≡ T t
xT x

t − T x
xT t

t = εµνTµ
tT ν

x = det Tµν

The Lagrangian density of a “seed” theory

L0 ≡ L |α=0

T T as a series in α is a well-defined operator

Irrelevant deformation
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Properties of the T T deformation Zamolodchikov ’04

If the seed model is Lorentz invariant and renormalisable,
and Tµν is symmetric

Spectrum obeys the inhomogeneous inviscid Burgers eq

∂αEα(R,P) +
1
2
∂R(E2

α(R,P)− P2) = 0 , P =
2πk
R

Two-particle S-matrices are related as

S(θ) = e−iαm2 sinh θS(0)(θ) , θ = θ1 − θ2

If the seed model is integrable then the T T deformed model is
also integrable Smirnov, Zamolodchikov ’16 & Cavaglià, Negro, Szécsényi, Tateo ’16
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Introduction Action Examples Comments I Solitons Comments II Open questions

Properties of the T T deformation Zamolodchikov ’04

If the seed model is Lorentz invariant and renormalisable,
and Tµν is symmetric

Spectrum obeys the inhomogeneous inviscid Burgers eq

∂αEα(R,P) +
1
2
∂R(E2

α(R,P)− P2) = 0 , P =
2πk
R

Two-particle S-matrices are related as

S(θ) = e−iαm2 sinh θS(0)(θ) , θ = θ1 − θ2

If the seed model is integrable then the T T deformed model is
also integrable Smirnov, Zamolodchikov ’16 & Cavaglià, Negro, Szécsényi, Tateo ’16
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Connections to two-dimensional gravity

A T T deformed S-matrix and the partition function can be
obtained by coupling a seed model to the flat space
Jackiw-Teitelboim gravity Dubovsky, Gorbenko, Mirbabayi ’17

This leads to the interpretation of the T T deformation as a
nonlocal field dependent change of space-time coordinates of
the seed model Conti, Negro, Tateo ’18

The partition function of a deformed model can be derived by
coupling a seed model to a random geometry Cardy ’18

The action of a T T deformed model can be obtained by
interpreting it as the action of a non-critical string sigma model in
a light-cone gauge Baggio, Sfondrini, Tartaglino-Mazzucchelli, Walsh ’18 & Frolov ’19

The action for T T deformations with the canonical stress-energy
tensor is universal Frolov ’19
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In this talk

Derive the TT deformed actions for sigma-model, the matrix
NLS equation and the Gardner equation by using the universal
action Esper, Frolov ’21

Analyse solitons of the deformed NLS and KdV models to see
whether they exhibit the phenomenon of widening/narrowing the
width of particles under the T T deformation Cardy, Doyon ’20

The TT deformed action for the (non-matrix) NLS model was
also found by using different and substantially more complicated
methods Hansen, Jiang, Xu ’20 & Ceschin, Conti, Tateo ’20 & Chen, Hou, Tian ’20

Deformed soliton solutions were also analysed Ceschin, Conti, Tateo ’20
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Universal T T deformed action Frolov ’19

Seed model with the action

S0 =

∫
dxdt L0 , L0 = P t

a(Ψ)∂t Ψ
a + Px

a (Ψ)∂x Ψa − V(Ψ)

Ψa , a = 1, . . . ,n are bosonic and fermionic fields which can be
real or complex

If a field is complex then the set (Ψa) also includes its complex
conjugate field

P t
a, Px

a and V are such that the action is real and Grassmann
even but otherwise they are arbitrary functions of Ψa

The seed action is written in the first-order formalism wrt both
time and space ⇒ many of the fields are non-dynamical

If each Ψa belongs to a Lorentz group representation and P t
a, Px

a
belong to the conjugate representation, and V is a Lorentz
scalar then the seed model is Lorentz invariant.



Introduction Action Examples Comments I Solitons Comments II Open questions

Universal T T deformed action Frolov ’19

Seed model with the action

S0 =

∫
dxdt L0 , L0 = P t

a(Ψ)∂t Ψ
a + Px

a (Ψ)∂x Ψa − V(Ψ)

Ψa , a = 1, . . . ,n are bosonic and fermionic fields which can be
real or complex

If a field is complex then the set (Ψa) also includes its complex
conjugate field

P t
a, Px

a and V are such that the action is real and Grassmann
even but otherwise they are arbitrary functions of Ψa

The seed action is written in the first-order formalism wrt both
time and space ⇒ many of the fields are non-dynamical

If each Ψa belongs to a Lorentz group representation and P t
a, Px

a
belong to the conjugate representation, and V is a Lorentz
scalar then the seed model is Lorentz invariant.



Introduction Action Examples Comments I Solitons Comments II Open questions

Universal T T deformed action Frolov ’19

Seed model with the action

S0 =

∫
dxdt L0 , L0 = P t

a(Ψ)∂t Ψ
a + Px

a (Ψ)∂x Ψa − V(Ψ)

Ψa , a = 1, . . . ,n are bosonic and fermionic fields which can be
real or complex

If a field is complex then the set (Ψa) also includes its complex
conjugate field

P t
a, Px

a and V are such that the action is real and Grassmann
even but otherwise they are arbitrary functions of Ψa

The seed action is written in the first-order formalism wrt both
time and space ⇒ many of the fields are non-dynamical

If each Ψa belongs to a Lorentz group representation and P t
a, Px

a
belong to the conjugate representation, and V is a Lorentz
scalar then the seed model is Lorentz invariant.



Introduction Action Examples Comments I Solitons Comments II Open questions

Universal T T deformed action Frolov ’19

Seed model with the action

S0 =

∫
dxdt L0 , L0 = P t

a(Ψ)∂t Ψ
a + Px

a (Ψ)∂x Ψa − V(Ψ)

Ψa , a = 1, . . . ,n are bosonic and fermionic fields which can be
real or complex

If a field is complex then the set (Ψa) also includes its complex
conjugate field

P t
a, Px

a and V are such that the action is real and Grassmann
even but otherwise they are arbitrary functions of Ψa

The seed action is written in the first-order formalism wrt both
time and space ⇒ many of the fields are non-dynamical

If each Ψa belongs to a Lorentz group representation and P t
a, Px

a
belong to the conjugate representation, and V is a Lorentz
scalar then the seed model is Lorentz invariant.



Introduction Action Examples Comments I Solitons Comments II Open questions

Universal T T deformed action Frolov ’19

The light-cone gauge approach to T T deformed models leads to

L =
Kt

t + Kx
x − V + α(Kt

t K
x
x − Kt

x Kx
t )

1 + αV
=
L0 − α

2 ε
γρεµνKµγKνρ

1 + αV

Kt
γ ≡ P t

a∂γΨa , Kx
γ ≡ Px

a∂γΨa , γ = t , x

The Levi-Civita symbol is defined by ε01 = εtx = 1 = εxt = ε10

The canonical stress-energy tensor is

Tµ
ν =

∂L
∂∂µΨa ∂νΨa − δµνL

T t
t =
−Kx

x + V
1 + αV

, T x
t =

Kx
t

1 + αV
, T t

x =
Kt

x

1 + αV
, T x

x =
−Kt

t + V
1 + αV

L satisfies the flow equation

∂L
∂α

= T t
tT x

x − T t
xT x

t
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Universal T T deformed action Frolov ’19

L =
Kt

t + Kx
x − V + α(Kt

t K
x
x − Kt

x Kx
t )

1 + αV
=
L0 − α

2 ε
γρεµνKµγKνρ

1 + αV

Any seed model can be written in the first-order form ⇒ the TT
deformed Lagrangian is universal

In a non-relativistic case L0 may include total derivative terms

They change the canonical stress-energy tensor

The Lagrangian and the equations of motion of the deformed
model depend on the total derivative terms

This dependence probably cannot be undone by a field
redefinition
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T T deformed sigma model Esper, Frolov ’21

Sigma-model of n scalar fields

L0 =
1
2
ηαβ∂αX i∂βX j Gij (X ) +

1
2
εαβ∂αX i∂βX j Bij (X )− U(X )

ηαβ = diag(1,−1), ε01 = εtx = 1 = εxt , U is an arbitrary potential

Introduce the momentum vectors

Pα
i =

∂L0

∂∂αX i =
(
ηαβ Gij + εαβ Bij

)
∂βX j (3.1)

Rewrite L0 in the first-order formalism

L0 = Pγ
i ∂γX i − 1

2
(
ηγρ G̃ij + εγρ B̃ij)Pγ

i Pρ
j − U

G̃ij and B̃ij satisfy

G̃ij(Gjk − BjlGlmBmk
)

= δi
k , B̃ij = −G̃ik BklGlj = −Gik BklG̃lj
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T T deformed sigma model Esper, Frolov ’21

L0 = Pγ
i ∂γX i − 1

2
(
ηγρ G̃ij + εγρ B̃ij)Pγ

i Pρ
j − U

The set (Ψa) consists of X i , and Pγ
i , and

Kt
t = P t

i ∂tX i , Kx
x = Px

i ∂xX i , Kt
x = P t

i ∂xX i , Kx
t = Px

i ∂tX i

V =
1
2
(
ηγρ G̃ij + εγρ B̃ij

)
Pγ

i Pρ
j + U

The TT deformed Lagrangian of the sigma model is

L =
Pγ

i ∂γX i − 1
2

(
ηγρ G̃ij + εγρ B̃ij

)
Pγ

i Pρ
j − U − α

2 ε
γρεµνPµ

i ∂γX iPν
j ∂ρX

j

1 + α
2

(
ηγρ G̃ij + εγρ B̃ij

)
Pγ

i Pρ
j + αU
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T T deformed sigma model Esper, Frolov ’21

L =
Pγ

i ∂γX i − 1
2

(
ηγρ G̃ij + εγρ B̃ij

)
Pγ

i Pρ
j − U − α

2 ε
γρεµνPµ

i ∂γX iPν
j ∂ρX

j

1 + α
2

(
ηγρ G̃ij + εγρ B̃ij

)
Pγ

i Pρ
j + αU

One can get rid of the auxiliary fields Pγ
i and get

Lph = −1
α

+
1

2α̃
+

1
2α̃

√
1 + 2α̃(Ẋ 2 − X ′2)− 4α̃2(Ẋ 2X ′2 − (ẊX ′)2) + Ẋ iX ′j Bij

Ẋ 2 ≡ Gij Ẋ i Ẋ j , X ′2 ≡ GijX ′iX ′j , ẊX ′ ≡ Gij Ẋ iX ′j , α̃ = α(1 + αU)

Lph admits perturbative expansion in α

L describes both perturbative and non-perturbative in α
solutions of the eom
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T T deformed matrix nonlinear Schrödinger model Esper, Frolov ’21

L0 =
i
2

(ψ̄ψ̇ − ˙̄ψψ)− ψ̄′ψ′ − U , U = κ ψ̄ψψ̄ψ − µ ψ̄ψ

ψ and ψ̄ are complex n ×m and m × n matrices hermitian
conjugate to each other.

ψ = (ψai ) , ψ̄ = ψ† = (ψ∗ia) , a = 1, . . . ,n , i = 1, . . . ,m

The trace is implied, i.e.

ψ̄ψ̇ ≡ ψ∗iaψ̇ai , ψ̄ψψ̄ψ ≡ ψ∗iaψajψ
∗
jbψbi
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T T deformed matrix nonlinear Schrödinger model Esper, Frolov ’21

L0 =
i
2

(ψ̄ψ̇ − ˙̄ψψ)− ψ̄′ψ′ − U , U = κ ψ̄ψψ̄ψ − µ ψ̄ψ

Introduce

A = (Aai ) , Ā = A† = (A∗ia) , a = 1, . . . ,n , i = 1, . . . ,m

Rewrite L0

L0 =
i
2

(ψ̄ψ̇ − ˙̄ψψ)− Āψ′ − ψ̄′A + ĀA− U

The set (Ψa) consists of ψ, ψ̄,A, Ā, and

Kt
t =

i
2

(ψ̄ψ̇ − ˙̄ψψ) , Kx
x = −Āψ′ − ψ̄′A ,

Kt
x =

i
2

(ψ̄ψ′ − ψ̄′ψ) , Kx
t = −Āψ̇ − ˙̄ψA , V = U − ĀA

the trace is agian implied.
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T T deformed matrix nonlinear Schrödinger model Esper, Frolov ’21

The T T deformed Lagrangian of the matrix NLS

L =
K t

t − Āψ′ − ψ̄′A + ĀA− U − α
(
K t

t (Āψ′ + ψ̄′A)− K t
x (Āψ̇ + ˙̄ψA)

)
1− α(ĀA− U)

Eliminating A, Ā, one gets

Lph = −1
α

+
1 + αK t

t +
√

Λ

2α̃
, α̃ = α(1 + αU)

Λ = (1 + αK t
t )2(1− 4α̃ψ̄′ψ′) + 4αα̃(1 + αK t

t )K t
x ( ˙̄ψψ′ + ψ̄′ψ̇)− 4α2 α̃ (K t

x )2 ˙̄ψψ̇

In Λ the trace is implied.

The Poisson structure is modified

Developing a Hamiltonian formulation requires dealing with an
intricate system of second-class constraints
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T T deformed Gardner equation Esper, Frolov ’21

The Gardner equation is a combined KdV-mKdV equation

u̇ + µu′ + 6 g uu′ − 6 h u2u′ + u′′′ = 0

g,h and µ are constants

If u satisfies periodic boundary conditions then µ can be
removed by a constant shift of u

u → u − c , hc2 + gc − µ

6
= 0

which also changes g

For decreasing boundary conditions such a shift is forbidden

The Gardner equation is the continuity equation for the current

J t = u , Jx = µu + 3 g u2 − 2 h u3 + u′′

If the charge Q =
∫

dx u exists then it is conserved
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T T deformed Gardner equation Esper, Frolov ’21

u̇ + µu′ + 6 g uu′ − 6 h u2u′ + u′′′ = 0

The Gardner equation can be derived from the action

S0 =

∫
dxdt L0 , L0 = κ (−φ̇φ′ − µφ′2 − 2gφ′3 + hφ′4 + φ′′2 ) ,

κ is any constant, φ satisfies the boundary conditions

φ(t ,∞)− φ(t ,−∞) = Qφ = const

u is related to φ as u = φ′

In the undeformed case Qφ = Q

Eom for φ is invariant under a shift of φ by any function of time.

By using this invariance one may require φ(t ,±∞) = const

In the deformed case this invariance is broken, and different time
dependence of φ(t ,∞) leads to different solutions
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T T deformed Gardner equation Esper, Frolov ’21

S0 =

∫
dxdt L0 , L0 = κ (−φ̇φ′ − µφ′2 − 2gφ′3 + hφ′4 + φ′′2 )

Introduce three auxiliary fields u , A , B, and cast L0 into

L0 = κ (−u φ̇− Bφ′ + 2A u′ + uB − µ u2 − 2g u3 + h u4 − A2)

u is the Gardner field u

L0 is invariant under constant shifts of φ ⇒

J t = u , Jx = B , ∂µJµ = 0
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T T deformed Gardner equation Esper, Frolov ’21

L0 = κ (−u φ̇− Bφ′ + 2A u′ + uB − µ u2 − 2g u3 + h u4 − A2)

The set (Ψa) consists of φ, u,B,A, and

Kt
t = −κ u φ̇ , Kx

x = −κBφ′ + 2κA u′ , Kt
x = −κ uφ′

Kx
t = −κBφ̇+ 2κA u̇ , V = −κ (uB − µ u2 − 2g u3 + h u4 − A2)

The TT deformed Lagrangian of the Gardner model is

L = κ
−u φ̇− Bφ′ + 2A u′ − V

κ − 2ακA u (u′φ̇− u̇φ′)

1− ακ (uB − µ u2 − 2g u3 + h u4 − A2)

φ satisfies the same boundary conditions as in the undeformed
case
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κ − 2ακA u (u′φ̇− u̇φ′)

1− ακ (uB − µ u2 − 2g u3 + h u4 − A2)

L0 changes under the transformation

φ→ φ+ f (t) , B → B +
df
dt

by a derivative term

L0 → L0 − κ
∂

∂x
( df

dt
φ
)

L transforms nontrivially ⇒ time dependence of φ at x = ±∞
changes physical properties of the T T deformed Gardner model

It is impossible to get rid of all the auxiliary fields and get a local
Lagrangian because the Lagrangian depends on derivatives of u
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Introduction Action Examples Comments I Solitons Comments II Open questions

Similarities and differences

All the Lagrangians depend on auxiliary fields

If the physical fields of a seed model do not depend on second-
or higher-order derivatives then auxiliary fields

enter a TT deformed Lagrangian algebraically
can be eliminated leading in the cases considered to
Nambu-Goto type actions

More complicated seed models (even relativistic invariant) may
lead to T T deformed Lagrangians which are solutions to high
degree polynomial equations
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Similarities and differences

A Nambu-Goto type Lagrangian obtained by eliminating auxiliary
fields has a square root sign ambiguity

If a model is on a line then finiteness of the energy singles out
the perturbative in α branch

If the model is on a circle then ???

Consider the TT deformed free massless scalars and choose
the negative sign in front of the square root in the T T deformed
Lagrangian

For α < 0 the energy is not bounded from below

If α > 0 then the energy of any solution is bounded from below,
and diverges in the limit α→ 0

Should the contribution from the nonperturbative branch be
included in, for example, the partition function?

It would imply that for α > 0 the spectrum of TT deformed
relativistic models previously discussed is incomplete and must
be supplemented by a nonperturbative part
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Introduction Action Examples Comments I Solitons Comments II Open questions

Similarities and differences

The physical fields of the Gardner model depend on second-order
derivatives

The TT deformed eom for the auxiliary fields are not algebraic,
and depend on space derivatives of the auxiliary fields

Eliminating the auxiliary fields would lead to an action non-local
in space

The TT deformed Gardner model is expected to have properties
different from the seed model already at the classical level

We will see that solutions of the T T deformed KdV equation are
very sensitive to the behaviour of φ at space infinities
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Similarities and differences

The T T deformation drastically modifies the Poisson structure of all
the non-relativistic models

Developing a Hamiltonian formulation requires dealing with an
intricate system of second-class constraints

This makes TT deformed non-relativistic models more
complicated than the relativistic ones where the Hamiltonian
formulation is straightforward

This also makes unclear how to derive an analog of the
inhomogeneous inviscid Burgers eq
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Introduction Action Examples Comments I Solitons Comments II Open questions

Quantum T T deformed non-relativistic models?

Do T T deformed non-relativistic models exist as quantum theories?

No principal difficulties in perturbative quantisation. The
expansion in powers of α is straightforward, and the standard
technique can be used to compute the scattering matrix

S-matrices would differ only by the T T CDD factor

The relation between the S-matrices should be considered as a
part of the definition of a quantised T T deformed model

The spectrum of the T T deformed NLS (and LL) model on a
circle can be also studied perturbatively

At each order in α one can remove all interaction terms with time
derivatives of ψ by a field redefinition producing new terms with
higher space derivatives

The resulting model has the undeformed Poisson structure and
can be easily quantised. The spectrum of the Hamiltonian can
then be found as an expansion in powers of α
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Quantum T T deformed non-relativistic models?

For finite α a more pragmatic approach to the T T deformed spectrum
is to postulate that it is governed by the usual Bethe equations with
the T T deformed S-matrix

Done for the deformed NLS model in the repulsive regime Jiang ’20

It was found that the properties of the model were similar to the
properties of T T deformed CFT’s

No argumentation why the Bethe equations would not be
replaced by a more complicated system of TBA-like equations

Interesting to compute the spectrum as an expansion in powers
of α, and compared it with the Bethe ansatz predictions
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Undeformed NLS soliton

The undeformed one-soliton solution exists for κ < 0

κ = −g2

4
, g > 0

The undeformed one-soliton solution

ψ =
u
g

1
cosh

( u
2 (x − vt)

)eiφ , φ =
v
2

(x − vt) +
t
4
(
u2 + v2 + 4µ

)
U(1) charge Q, momentum P and energy E of the soliton

Q =

∫ ∞
−∞

dx ψ̄ψ =
4u
g2 ,

P = −
∫ ∞
−∞

dx T t
x =

2u v
g2 = m v , m =

2u
g2 =

Q
2
,

E =

∫ ∞
−∞

dx T t
t =

uv2

g2 −
u3

3g2 −
4uµ
g2 =

P2

2m
− 1

24
g4m3 − µQ ,

up to a constant the dispersion relation is nonrelativistic

the U(1) charge is twice the mass of the soliton
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T T deformed NLS soliton

The TT deformed Lagrangian for the NLS model simplifies

L =
i
2 (ψ̄ψ̇ − ˙̄ψψ)− Āψ′ − ψ̄′A + ĀA− U + α i

2 (Āψ + ψ̄A)( ˙̄ψψ′ − ψ̄′ψ̇)

1− α(ĀA− U)

U = −g2

4
(ψ̄ψ)2 − µψ̄ψ

The deformed soliton: ψ = ρ(x − vt) eiφ, A = ρA(x − vt)eiφ

ρ′ = ± 2ρ
√

u2 − g2ρ2

4 + αρ2 (−2g2ρ2 + u2 − v2 − 4µ)
, ρA =

1
2
ρ
(

iv ±
√

u2 − g2ρ2
)

x − vt = x0 ±
2 coth−1

(
u√

u2−g2ρ2

)
u

∓
α
√

u2 − g2ρ2
(
u2 + 3v2 + 12µ+ 2g2ρ2

)
6g2

φ =
1
2

v(x − vt) +
1
4

t
(
u2 + v2 + 4µ

)
±
αv
(
u2 − g2ρ2

)3/2

6g2
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2 (Āψ + ψ̄A)( ˙̄ψψ′ − ψ̄′ψ̇)

1− α(ĀA− U)
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T T deformed NLS soliton

ρ′ = ± 2ρ
√

u2 − g2ρ2

4 + αρ2 (−2g2ρ2 + u2 − v2 − 4µ)

Set t = 0 and x0 = 0

Nontrivial dependence on µ. However, it enters the amplitude
only through the combination v2 + 4µ

Maximum of ρ(x) is u/g, and it is at x = 0

ρ is a single-valued function of x only if ρ′ 6=∞ for all x

4 + αρ2 (−2g2ρ2 + u2 − v2 − 4µ
)
6= 0 for 0 ≤ ρ ≤ u

g
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Good values of parameters

Two critical values of α

α− ≡ −
32g2

(u2 − v2 − 4µ)2 < 0 , α+ ≡
4g2

u2(u2 + v2 + 4µ)

Good regions

A. −∞ < u2 − v2 − 4µ < 0 and −∞ < α < α+ , α+ > 0

B. 0 < u2 − v2 − 4µ < 2u2 and α− < α < α+ , α+ > 0

C. 2u2 < u2 − v2 − 4µ < 4u2 and α+ < α− < α <∞
D. 4u2 < u2 − v2 − 4µ <∞ and α+ < α <∞ , α+ < α− < 0

i. A is satisfied if v2 > u2 − 4µ. A lower bound on v2 if u2 > 4µ
ii. If µ ≥ 0 B is satisfied for all u , v but C and D are not
iii. D is satisfied if v2 < −3u2 − 4µ. An upper bound on v2

iv. If µ < 0 then all the four conditions can occur
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i. A is satisfied if v2 > u2 − 4µ. A lower bound on v2 if u2 > 4µ
ii. If µ ≥ 0 B is satisfied for all u , v but C and D are not
iii. D is satisfied if v2 < −3u2 − 4µ. An upper bound on v2

iv. If µ < 0 then all the four conditions can occur
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Shape of the deformed NLS soliton

Q, P and E of the soliton are unchanged by the deformation

The shape of the soliton changes

Define its size by using the full-width-half-maximum

FWHM = −α
√

3 u
(
u2 + 2v2 + 8µ

)
4g2 +

4 log
(

2 +
√

3
)

u

The soliton exhibits the phenomenon of widening/narrowing the
width of particles under the T T deformation

Whether the size is increasing or decreasing depends not only
on the sign of α but also on the sign of s ≡ u2 + 2v2 + 8µ

1 s > 0 for all values of u and v only if µ ≥ 0
2 s > 0 if the soliton parameters satisfy condition A
3 s < 0 for conditions C or D
4 For parameters satisfying condition B one can have both

positive and negative s if µ is negative
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Plots of the deformed NLS soliton

Set g = 1, u = 1, v = 0. Graphs are parametrised by µ

α=0

α=α- /2

α=α-

α=2α-

ρ(x)

α=0

α=α- /2

α=α-

α=2α-

ρ(x)

α=0

α=α- /2

α=α-

α=2α-

ρ(x)

Figure: Left: Case B, µ = 0, α− = −32, displaying formation of
shockwave solution for negative α. Centre: Boundary case of B and
C, µ = −1/4, α− = −8, example of competing shockwave and
narrowing behaviours creating a double-loop solution. Right: Case C,
µ = −0.6, α− = −2.76817, soliton is becoming singular at α−, after
which it forms a loop.
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Plots of the deformed NLS soliton

α=0

α=α+

α=2α+

ρ(x)

α=0

α=-1

α=-2

ρ(x)

α=0

α=α+

α=2α+

ρ(x)

Figure: Left & Centre: Case A, µ = 1, α+ = 4/5, displaying loop
formation for α > α+ > 0 and widening for α < 0. Right: Case B,
µ = 0, α+ = 4, loop solution appears for α > 0, this is the only case
with a finite region of valid α.
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Plots of the deformed NLS soliton

α=0

α=10

α=20

ρ(x)

α=0

α=α+ /2

α=α+

α=2α+

ρ(x)

α=0

α=1

α=2

ρ(x)

Figure: Left: Case C, µ = −0.6, α− = −2.76817, showing regular
widening solution for α > 0. Centre & Right: Case D, µ = −10,
α+ = −4/39. Loop formation for α < α+ < 0, widening for α > 0.
Note the varying rate of soliton widening between the two cases.
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Gluing procedure

ρ(x) ρ(x) ρ(x)

Figure: Demonstration of the gluing procedure on the loop (Left), bell
(Centre) and double-loop (Right) soliton solutions, indicating the
points where ρ′ becomes singular.
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Undeformed KdV soliton

KdV eq is the g = 1 , h = 0 case of Gardner eq

u̇ + µu′ + 6uu′ + u′′′ = 0

We keep µ so that for µ < 0 we could have left-moving solitons

The undeformed one-soliton solution

u =
2w2

cosh2 (w(x − vt)
) , w =

1
2
√

v − µ > 0

φ = 2w tanh (w(x − vt)) + f (t)

where f (t) is any function of t

Charge Q, momentum P and energy E of the soliton

Q =

∫ ∞
−∞

dx u = 4w , P =

∫ ∞
−∞

dx u2 =
16
3

w3

E =

∫ ∞
−∞

dx (µu2 + 2u3 − u′2) =
16
3
µw3 +

64
5

w5 = µP +
3
5

(
3
2

)2/3

P5/3
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T T deformed KdV soliton

The TT deformed soliton depends on f (t) in a nontrivial way

Consider the simplest case f (t) = b t where b is a constant

Redefining φ as φ→ φ+ bt , we find L → L− bJ t , J t = −∂L/∂φ̇
We can interpret b as the parameter of the deformation by cJ t

The TT deformed solution can be found by using the ansatz

φ = φ(x − v t) + b t , u = u(x − v t) , A = A(x − v t) , B = B(x − v t)

The solution

u′ = ± u
√

4w̃2 − 2u
1 + αu2 (4u− 8w̃2 − αb2)

, φ′ =
u− α b u2

1 + αu2 (4u− 8w̃2 − αb2)

B =
(
µ+ 4w̃2) u + b , A = ±u

√
4w̃2 − 2u , w̃2 =

v − µ− α b2

4
= w2 − α b2

4

1 For real solutions, w̃2 > 0, or equivalently, v > µ+ α b2

2 For fixed v , µ,b it imposes an upper bound on α: α < µ−v
b2

3 For α < 0 one may have w2 = v−µ
4 < 0
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T T deformed KdV soliton

Deformed energy and momentum

E =
16
15

w̃3 (12w̃2 + 5(µ− αb2)
)
, P =

16
3

w̃3

E(P) = P
(
µ− αb2)+

3
5

(
3
2

)2/3

P5/3

The previously identical conserved charges of J t and φ′

become independent

Q =

∫
dxJ t = 4w̃

(
1 +

4
3

w̃2αb
)
, Qφ =

∫
dxφ′ = 4w̃

(
1− 4

3
w̃2αb

)



Introduction Action Examples Comments I Solitons Comments II Open questions

T T deformed KdV soliton

Deformed energy and momentum

E =
16
15

w̃3 (12w̃2 + 5(µ− αb2)
)
, P =

16
3

w̃3

E(P) = P
(
µ− αb2)+

3
5

(
3
2

)2/3

P5/3

The previously identical conserved charges of J t and φ′

become independent

Q =

∫
dxJ t = 4w̃

(
1 +

4
3

w̃2αb
)
, Qφ =

∫
dxφ′ = 4w̃

(
1− 4

3
w̃2αb

)



Introduction Action Examples Comments I Solitons Comments II Open questions

T T deformed KdV soliton

Integrating the equation for u′, we find

x − vt = x0 ±
arctanh

(√
4w̃2−2u

2w̃

)
w̃

∓ 1
15

√
2α
√

2w̃2 − u
(
4
(
2w̃2 − u

) (
3u + 4w̃2)+ 5αb2 (u + 4w̃2))

It displays both shockwave and looping solutions

The full-width half-maximum of the soliton

FWHM =
2arcoth

(√
2
)

w̃
− 2
√

2
15

αw̃3 (25αb2 + 28w̃2)
For positive α it decreases

For negative α it may increase or decreases depending on b
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T T deformed KdV soliton

Critical values of α

α− = −
√

4w4 + 2|b| − 2w2

b2 , α
(2)
+ =

2w2 −
√

4w4 − 2|b|
b2 ,

α
(3)
+ =

2w2 +
√

4w4 − 2|b|
b2

α
(1)
+ is the positive root smaller than 2w2

b2 of the equation

1− 128
27

α

(
w2 − αb2

8

)3

= 0
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T T deformed KdV soliton

Bad regions

Loop:
{

b 6= 0 , α < α− < 0
b 6= 0 , 4w8 > b2 , α

(2)
+ < α < α

(3)
+ < 4w2

b2

Bell or Double Loop:

{
b = 0 , α > 27

128w6

b 6= 0 , 4w8 > b2 , 0 < α
(1)
+ < α < α

(2)
+
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Plots of the deformed KdV soliton

α=0

α=αcr /2

α=αcr

α=2αcr

u(x)

α=0

α=-1

α=-5

u(x)

α=0

α=-1

α=-5

u(x)

Figure: KdV soliton solutions for w = 1, b = 0. Double-loop solution
forms only for α > αc = 27/128. For α < 0, solution remains
single-valued and increases in width. Rightmost plot examines peak
of α < 0 plot, indicating that the solution remains smooth at x=0.
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Plots of the deformed KdV soliton

α=0

α=α+
(1)/ 2

α=α+
(1)

u(x)

α=α+
(1)

α=α1

α=α2

α=α+
(2)

u(x)

α=α+
(2)

α=α3

α=α4

α=α+
(3)

u(x)

Figure: KdV soliton for w = 1, b = 1, α > 0, transitioning between
different types of multi-valued solutions. Left: Width is decreasing with
increasing α, α(1)

+ ≈ 0.23. Centre: Formation of double-loop solution
for α(1)

+ < α < α
(2)
+ , with a singular solution at α = α

(2)
+ ≈ 0.59. The

intermediate values are equally spaced, α1 =
2α(1)

+ +α
(2)
+

3 ,

α2 =
α

(1)
+ +2α(2)

+

3 . Right: Amplitude decreasing, transitioning to singular

peak at α = α
(3)
+ ≈ 3.41. α3 =

2α(2)
+ +α

(3)
+

3 , α4 =
α

(2)
+ +2α(3)

+

3 .



Introduction Action Examples Comments I Solitons Comments II Open questions

Plots of the deformed KdV soliton

α=α+
(3)

α=3.7

α=3.9

u(x)

α=0

α=0.2

α=0.4

u(x)

α=0

α=α- /2

α=α-

α=2α-

u(x)

Figure: Left: Continuation of evolution from figure 6, displaying
single-valued solution for α > α

(3)
+ ≈ 3.41. The extreme flattening of

the solution in the limit α→ 4 is due to w̃ → 0. Centre: With
w = 1, b = 3, the soliton remains regular for all 0 < α < 4/9, after
which it ceases to exist in a similar fashion. Right:
w = 1, b = 1, α < 0, α− ≈ −4.4. Solution widens, but with nonzero b
develops into a loop solution.
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Comments II

Soliton’s width depends on α confirming the general
phenomenon of widening/narrowing the width of particles under
the T T deformation Cardy, Doyon ’20

Whether soliton’s size is increasing or decreasing depends on
the sign of α, and on the potential and soliton parameters

In the NLS case this is caused by the addition of the time
component of the conserved U(1) current to the seed model

After the T T deformation this cannot be undone by a time
dependent U(1) transformation, and leads to substantial
changes in the soliton’s properties

The relativistic case is more restrictive because adding the time
component of a conserved current breaks Lorentz invariance
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Comments II

In the absence of the chemical potential the width is increasing
for α < 0 and decreasing for α > 0 which is opposite to what
was observed in Cardy, Doyon ’20 & Jiang ’20

It is because the energy of the NLS soliton is given by
E = P2

2m −
1

24 g4m3 − µQ, and for µ = 0 its rest energy is negative

The existence of the rest energy means that the T T deformation
is a mixture of the T T deformation with a stress-energy tensor
shifted so that the rest energy is zero, and the JP deformation
discussed in Cardy, Doyon ’20 & Jiang ’20

If the chemical potential is sufficiently negative then the width is
widening or narrowing in accord with Cardy, Doyon ’20

In the KdV case with the parameter b = 0 the width of the
deformed soliton again behaves oppositely to Cardy, Doyon ’20 & Jiang ’20

Since the rest energy of the soliton is zero, one may conclude
that the effect of “pure” TT deformation is in fact opposite to
what was observed for the JP deformation Cardy, Doyon ’20 & Jiang ’20
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Comments II

Another common property of the deformed solitons is that for
any values of the parameters there is at least one critical value
αcr at which solitons begin to exhibit the shock-wave behaviour

We proposed that for values of α beyond αcr a soliton solution
may be constructed by gluing together the two branches of the
soliton solution at the points where the first derivative of the
soliton field diverges

Despite the divergency, the soliton energy and momentum are
finite, and the dispersion relation is defined for all values of α

Is the glued soliton is unstable?

There are examples of models with singular solitons
Dzhordzhadze, Pogrebkov, Polivanov ’1979
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Comments II

The TT deformed KdV equation admits at least a
one-parameter family of one-soliton solutions

The extra parameter b can be introduced explicitly in the T T
deformed Lagrangian by shifting the field φ by bt , and requiring
that φ asymptotes to constants at space infinities

Then, b can be interpreted as the parameter of the deformation
by J t of the conserved current due to the invariance of the T T
deformed Gardner model under constant shifts of φ

Since b modifies soliton’s properties, e.g. it appears in the
dispersion relation, it is probably the right interpretation

Why does one have to impose constant space asymptotes on φ?

For finite b there is an upper bound on α, and approaching the
bound the soliton’s amplitude decreases and finally vanishes

Tuning soliton’s parameters, one can make the bound negative

Thus, b allows one to construct solutions which do not exist in
the seed model
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Open questions

Put the models on a circle and look for all possible solutions
including those with energy divergent in the limit α→ 0

Find Lax pairs for the deformed models. Lax pairs of several
models including the NLS model were found in Chen, Hou, Tian ’21

Apply the method to the matrix NLS model and the LL model

Generalise their method to models of the Gardner type where
auxiliary fields cannot be eliminated

Understanding the Poisson structure and developing a
Hamiltonian formulation is important and probably very hard

Given a Lax pair (V ,U) and a Hamiltonian formulation of the
NLS model, one can calculate the Poisson bracket between U ’s,
and see how the r -matrix structure is modified, and whether it
can be quantised
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Open questions

If a seed model possesses an additional conserved U(1) current
J then one can consider JT deformations Guica ’17

Analyse the properties of the NLS model deformed by JT

Steps in this direction made in Hansen, Jiang, Xu ’20 & Ceschin, Conti, Tateo ’20

The l.c.g. approach to the T T deformation of relativistic sigma
models was generalised to include the JT deformations and
deformations by operators linear in conserved currents Frolov ’19

Consider in the same framework nonrelativistic models. Since
the JT deformations break Lorentz invariance the deformations
by operators linear in conserved currents are necessary to
derive flow equations for the spectrum Le Floch, Mezei ’19

For nonrelativistic models it is necessary to include the linear
deformations to derive the flow equations for the T T deformation

Define the T T deformation of nonrelativistic models as the
Hamiltonian flow ∂αH = T T which preserves the Poisson
structure of a seed model
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THANK YOU!

Sergey Frolov



