Deforming the ODE/IM correspondence with $T \bar{T}$

APCTP Focus

Exact results on irrelevant deformations of QFT
27 September 2021

Roberto Tateo

Current collaborators

Fabrizio Aramini, Nicolò Brizio, Stefano Negro

Integrable nonlinear wave equation

The sin-Gordon NLIE: IM-side

$$
\epsilon(\theta)=r \sinh (\theta)+2 \pi k-2 \int_{\mathbb{R}} d \theta^{\prime} \mathscr{K}\left(\theta-\theta^{\prime}\right) \Im m \ln \left(1+e^{-i \epsilon(\theta-i 0)}\right)
$$

(This is for the vacuum states, more complicated integration contours appear for excited states.)

$$
\mathscr{K}(\theta)=\frac{1}{i 2 \pi} \frac{d}{d \theta} \ln S_{s G}(\theta) \quad r=m R=s^{1+\alpha} \frac{2 \sqrt{\pi} \Gamma\left(\frac{1}{2 \alpha}\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{2 \alpha}\right)} \quad \alpha=\beta^{-2}-1>1
$$

where m is the soliton mass, R the circumference of the cylinder and s is the scale parameter, useful for later considerations in the ODE/M setup

Starting from the NLIE, and setting:

$$
-i \epsilon(\theta)=\ln \left(\frac{Q(\theta+i \pi / \alpha)}{Q(\theta-i \pi / \alpha)}\right)
$$

where Q is the field-theory version of the Baxter's Q-function: $T(\theta) Q(\theta)=Q(\theta+i \pi / \alpha)+Q(\theta-i \pi / \alpha)$

$$
\begin{aligned}
& \ln Q\left(\theta+i \frac{\pi(\alpha+1)}{2 \alpha}, k\right) \sim \frac{r e^{\theta}}{4 \cos \left(\frac{\pi}{2 \alpha}\right)}+i \pi k+\frac{1}{2} \ln \mathscr{G}-\sum_{n=1}^{\infty} J_{2 n-1} e^{-(2 n-1) \theta}+\sum_{n=1}^{\infty} G_{n} e^{-2 \alpha n \theta}, \quad(\theta \rightarrow \infty) \\
& \ln Q\left(\theta+i \frac{\pi(\alpha+1)}{2 \alpha}, k\right) \sim \frac{r e^{-\theta}}{4 \cos \left(\frac{\pi}{2 \alpha}\right)}+i \pi k-\frac{1}{2} \ln \mathscr{G}-\sum_{n=1}^{\infty} \bar{J}_{2 n-1} e^{(2 n-1) \theta}+\sum_{n=1}^{\infty} \bar{G}_{n} e^{2 \alpha n \theta}, \quad(\theta \rightarrow-\infty)
\end{aligned}
$$

The coefficients $J_{2 n-1}, \bar{J}_{2 n-1}, G_{n}, \bar{G}_{n}$ are the local and non-local integrals of motion, respectively.

$$
\begin{aligned}
& J_{2 n-1}=-\frac{r \delta_{n, 1}}{4 \cos \left(\frac{\pi}{2 \alpha}\right)}+\frac{(-1)^{n+1}}{\sin \left(\frac{\pi(2 n-1)}{2 \alpha}\right)} \int_{\mathbb{R}} \frac{d \theta}{\pi} \Im m e^{(2 n-1)(\theta-i 0)} \ln \left(1+e^{-i \epsilon(\theta-i 0)}\right) \\
& \bar{J}_{2 n-1}=-\frac{r \delta_{n, 1}}{4 \cos \left(\frac{\pi}{2 \alpha}\right)}-\frac{(-1)^{n+1}}{\sin \left(\frac{\pi(2 n-1)}{2 \alpha}\right)} \int_{\mathbb{R}} \frac{d \theta}{\pi} \Im m e^{-(2 n-1)(\theta-i 0)} \ln \left(1+e^{-i \epsilon(\theta-i 0)}\right)
\end{aligned}
$$

In terms of J_{1} and \bar{J}_{1} the total energy and momentum are

$$
E=\frac{m}{2} \sin \left(\frac{\pi}{2 \alpha}\right)\left(J_{1}+\bar{J}_{1}+\frac{r}{2 \cos \left(\frac{\pi}{2 \alpha}\right)}\right), \quad P=\frac{m}{2} \sin \left(\frac{\pi}{2 \alpha}\right)\left(J_{1}-\bar{J}_{1}\right)
$$

where

$$
2 m \sin \left(\frac{\pi}{2 \alpha}\right)=m_{B}
$$

for $\alpha>1$, is the mass of the fundamental breather.

Including the $T \bar{T}$ deformation

$$
\mathscr{K}(\theta) \rightarrow \mathscr{K}(\theta)-\tau \frac{m^{2}}{2 \pi} \cosh (\theta) \Longleftrightarrow m R \sinh (\theta) \rightarrow m \mathscr{R}_{0} \sinh \left(\theta-\theta_{0}\right)
$$

where \mathscr{R}_{0} and θ_{0} are defined through the following relations

$$
\mathscr{R}_{0} \cosh \left(\theta_{0}\right)=R+\tau E(R, \tau), \quad \mathscr{R}_{0} \sinh \left(\theta_{0}\right)=\tau P(R, \tau)
$$

$$
\partial_{\tau} E(R, \tau)=E(R, \tau) \partial_{R} E(R, \tau)+\frac{P^{2}(R)}{R}
$$

(The Burgers-type equation)

$$
P=0 \rightarrow E(R, \tau)=E(R+\tau E(R, \tau), 0)
$$

Classical (modified) sinh-Gordon model: ODE-side

$$
\partial_{z} \partial_{\bar{z}} \eta-e^{2 \eta}+p(z) p(\bar{z}) e^{-2 \eta}=0
$$

(Modified sinh-Gordon equation)
with the functions $p(z)$ of the form

$$
p(z)=z^{2 \alpha}-s^{2 \alpha}
$$

Modified sinh-Gordon and standard sinh-Gordon equations are related by a simple change of variables

$$
\begin{aligned}
d w=\sqrt{p(z)} d z, & d \bar{w}=\sqrt{p(\bar{z})} d \bar{z} \\
& \partial_{w} \partial_{\bar{w}} \hat{\eta}-e^{2 \hat{\eta}}+e^{-2 \hat{\eta}}=0
\end{aligned}
$$

$$
\hat{\eta}=\eta-\frac{1}{4} \ln p \bar{p}
$$

(sinh-Gordon equation)

Lax pair

$$
\begin{gathered}
\boldsymbol{D}=\partial_{z}+\frac{1}{2} \partial_{z} \eta \sigma^{3}-e^{\theta}\left[\sigma^{+} e^{\eta}+\sigma^{-} p(z) e^{-\eta}\right], \overline{\boldsymbol{D}}=\partial_{\bar{z}}-\frac{1}{2} \partial_{\bar{z}} \eta \sigma^{3}-e^{-\theta}\left[\sigma^{-} e^{\eta}+\sigma^{+} p(\bar{z}) e^{-\eta}\right] \\
\boldsymbol{D} \Psi=0, \quad \overline{\boldsymbol{D}} \Psi=0 \quad \text { Lax equations (associate linear system) } \\
\text { with the parametrisation }
\end{gathered}
$$

$$
\begin{gathered}
\Psi=\binom{e^{\frac{\theta}{2}} e^{\frac{\eta}{2}} \psi}{e^{-\frac{\eta}{2}} e^{-\frac{\theta}{2}}\left(\partial_{z}+\partial_{z} \eta\right) \psi}=\binom{e^{-\frac{\eta}{2}} e^{\frac{\theta}{2}}\left(\partial_{\bar{z}}+\partial_{\bar{z}} \eta\right) \bar{\psi}}{e^{\frac{\eta}{2}} e^{-\frac{\theta}{2}} \bar{\psi}} \\
{\left[\partial_{z}^{2}-u(z, \bar{z})-e^{2 \theta} p(z)\right] \psi=0, \quad\left[\partial_{\overline{\bar{z}}}^{2}-\bar{u}(z, \bar{z})-e^{-2 \theta} p(\bar{z})\right] \bar{\psi}=0} \\
\text { and } \\
u(z, \bar{z})=\left(\partial_{z} \eta\right)^{2}-\partial_{z}^{2} \eta, \quad \bar{u}(z, \bar{z})=\left(\partial_{\bar{z}} \eta\right)^{2}-\partial_{\bar{z}}^{2} \eta
\end{gathered}
$$

Consider first the light-cone limit $\bar{z} \rightarrow 0$ in which η has the asymptotic

$$
\eta \rightarrow l \log (z \bar{z})+\eta_{0}+\ldots \quad(l=2|k|-1 / 2)
$$

For the ODE/IM : $\eta\left(|z|, \phi+\frac{\pi}{\alpha}\right)=\eta(|z|, \phi), \quad \eta(|z|, \phi) \sim \alpha \ln |z|$

$$
\text { In the limit } z \sim s \rightarrow 0, \theta \rightarrow \infty \text {, with the combinations }
$$

$$
x=e^{\frac{\theta}{1+\alpha}} z, \quad E=s^{2 \alpha} e^{\frac{2 \theta \alpha}{1+\alpha}}
$$

one finds the Schroedinger equation for the anharmonic oscillator (original ODE/IM):

$$
\left[-\partial_{x}^{2}+\frac{l(l+1)}{x^{2}}+x^{2 \alpha}\right] \psi=E \psi
$$

The classical local integrals of motion are

$$
\begin{gathered}
J_{2 n-1}=\frac{1}{2(2 n-1) \sin \left(\frac{\pi(2 n-1)}{2 \alpha}\right)} \int_{\gamma_{1}} d w \hat{P}_{2 n}+d \bar{w} \hat{R}_{2 n-2}, \quad \bar{J}_{2 n-1}=\frac{1}{2(2 n-1) \sin \left(\frac{\pi(2 n-1)}{2 \alpha}\right)} \int_{\overline{\bar{\gamma}}_{1}} d \bar{w} \hat{\vec{P}}_{2 n}+d w \hat{\bar{R}}_{2 n-2} \\
\partial_{\bar{w}} \hat{P}_{2 n}=\partial_{w} \hat{R}_{2 n-2}, \quad \partial_{w} \hat{\bar{P}}_{2 n}=\partial_{\bar{w}} \hat{\bar{R}}_{2 n-2} \\
T_{2}(\mathbf{w})=\frac{1}{2} \hat{u}(w, \bar{w})=\hat{P}_{2}, \quad \bar{T}_{2}(\mathbf{w})=\frac{1}{2} \hat{\bar{u}}(w, \bar{w})=\hat{\bar{P}}_{2}, \\
\Theta_{0}(\mathbf{w})=\bar{\Theta}_{0}(\mathbf{w})=\hat{R}_{0}+1=\hat{\bar{R}}_{0}+1=e^{-2 \hat{\eta}} \\
\hat{u}(w, \bar{w})=\left(\partial_{w} \hat{\eta}\right)^{2}-\partial_{w}^{2} \hat{\eta} \quad, \quad \hat{\bar{u}}(w, \bar{w})=\left(\partial_{\bar{w}} \hat{\eta}\right)^{2}-\partial_{\bar{w}}^{2} \hat{\eta}
\end{gathered}
$$

$$
\begin{gathered}
E=\mathscr{E}+\overline{\mathscr{E}}, P=\mathscr{E}-\overline{\mathscr{E}} \\
\mathscr{E}=\frac{m}{4} \int_{\gamma_{1}} d w T_{2}(\mathbf{w})+d \bar{w} \Theta_{0}(\mathbf{w}), \quad \overline{\mathscr{E}}=\frac{m}{4} \int_{\bar{\gamma}_{1}} d w \bar{\Theta}_{0}(\mathbf{w})+d \bar{w} \bar{T}_{2}(\mathbf{w})
\end{gathered}
$$

The ODE/IM correspondence claim is:

$$
\left\{J_{2 n-1}(R), \bar{J}_{2 n-1}(R)\right\}_{Q u a n t u m}=\left\{J_{2 n-1}(R), \bar{J}_{2 n-1}(R)\right\}_{\text {Classical }}
$$

The circumference R

$$
R=\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\gamma_{1}} d \bar{w}+\int_{\bar{\gamma}_{1}} d w\right)=\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\gamma_{2}} \bar{p}^{1 / 2} d \bar{z}+\int_{\bar{\gamma}_{2}} p^{1 / 2} d z\right)
$$

Classical $T \bar{T}$ as a dynamical change of coordinates

$$
\begin{array}{cc}
J=\frac{1}{\Delta(\mathbf{w})}\left(\begin{array}{cc}
1+2 t \Theta_{0}(\mathbf{w}) & -2 t T_{2}(\mathbf{w}) \\
-2 t \bar{T}_{2}(\mathbf{w}) & 1+2 t \bar{\Theta}_{0}(\mathbf{w})
\end{array}\right) & \binom{d w}{d \bar{w}}=J^{T}\binom{d x}{d \bar{x}} \\
\Theta_{0}=\bar{\Theta}_{0} & \tau=-\frac{8}{m^{2} \tan \left(\frac{\pi}{2 \alpha}\right)} t
\end{array}
$$

Now we wish to compute what we expect to be the $T \bar{T}$ perturbed circumference R of the theory, defined as

$$
\tilde{R}(R, t)=\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\gamma_{t}} d \bar{w}+\int_{\bar{\gamma}_{t}} d w\right)
$$

$$
\int_{\bar{\gamma}_{t}} d w=\int_{\bar{\gamma}_{1}} \frac{\left(1+2 t \Theta_{0}(\mathbf{w}((\mathbf{x})))\right.}{\Delta(\mathbf{w}(\mathbf{x}))} d x-2 t \frac{\bar{T}_{2}(\mathbf{w}(\mathbf{x}))}{\Delta(\mathbf{w}(\mathbf{x}))} d \bar{x}=\int_{\bar{\gamma}_{1}} d x-2 t \int_{\bar{\gamma}_{1}} \bar{\Theta}_{0}(\mathbf{x}) d x+\bar{T}_{2}(\mathbf{x}) d \bar{x}
$$

where

$$
\Delta(\mathbf{w})=\left(1+2 t \Theta_{0}(\mathbf{w})\right)\left(1+2 t \bar{\Theta}_{0}(\mathbf{w})\right)-4 t^{2} T_{2}(\mathbf{w}) \bar{T}_{2}(\mathbf{w})
$$

Therefore

$$
\tilde{R}(R, t)=R-\frac{8}{m^{2} \tan \left(\frac{\pi}{2 \alpha}\right)} t E(R, t)=R+\tau E(R, \tau)
$$

We would like to prove the validity of the Burgers equation on this classical (ODE) side of the correspondence

$$
\frac{d E(R, \tau)}{d \tau}=\frac{d E(R, \tau)}{d R} E(R, \tau)
$$

We consider the curve $\tilde{R}(R, \tau)=$ constant, with $R=R(\tau)$, and take the derivative with respect to τ :

$$
0=\frac{d R}{d \tau}+E(R, \tau)+\tau \frac{d E(R, \tau)}{d \tau}+\tau \frac{d E(R, \tau)}{d R} \frac{d R}{d \tau}
$$

$E(R, \tau)$ fulfils the Burgers equation if

$$
\frac{d R}{d \tau}=-E(R, \tau)
$$

To show this, it is necessary to clarify what $\tilde{R}(R, \tau)=$ constant means in this context.

$$
\tilde{R}(R, \tau)=\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\gamma_{t}} d \bar{w}+\int_{\bar{\gamma}_{t}} d w\right)
$$

Clearly, \tilde{R} is completely determined by the integration contour γ_{t}, so keeping \tilde{R} constant means keeping γ_{t} fixed.

At γ_{t} fixed, we need to find how γ_{1} changes under an infinitesimal variation of t :

$$
R(t)=\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\gamma_{1, x}} d \bar{x}+\int_{\bar{\gamma}_{1, x}} d x\right) \quad R(t-\delta t)=\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\gamma_{1, y}} d \bar{y}+\int_{\bar{\gamma}_{1, y}} d y\right)
$$

The map between x and y coordinates is

$$
\binom{d y}{d \bar{y}}=\left(J^{T}\right)^{-1}(t-\delta t) J^{T}(t)\binom{d x}{d \bar{x}}
$$

Explicitly:

$$
\begin{aligned}
& d y=d x-2 \delta t\left(\bar{\Theta}_{0}(\mathbf{x}) d x+\bar{T}_{2}(\mathbf{x}) d \bar{x}\right) \\
& d \bar{y}=d \bar{x}-2 \delta t\left(T_{2}(\mathbf{x}) d x+\Theta_{0}(\mathbf{x}) d \bar{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
R(t-\delta t) & =\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\bar{\gamma}_{1, y}} d y+\int_{\gamma_{1, y}} d \bar{y}\right)^{\text {giving }} \\
& =\frac{1}{m \tan \left(\frac{\pi}{2 \alpha}\right)}\left(\int_{\bar{\gamma}_{1, x}} d x+\int_{\gamma_{1, x}} d \bar{x}-2 \delta t\left(\int_{\bar{\gamma}_{1}, x}\left(\bar{\Theta}_{0}(\mathbf{x}) d x+\bar{T}_{2}(\mathbf{x}) d \bar{x}\right)+\int_{\gamma_{1, x}}\left(T_{2}(\mathbf{x}) d x+\Theta_{0}(\mathbf{x}) d \bar{x}\right)\right)\right) \\
& =R(t)-\frac{8 \delta t}{m^{2} \tan \left(\frac{\pi}{2 \alpha}\right)} E(R, t)
\end{aligned}
$$

Therefore

$$
\frac{d R}{d \tau}=-E(R, \tau)
$$

In conclusion we have

$$
\begin{aligned}
\frac{d E(R, \tau)}{d \tau}= & \frac{d E(R, \tau)}{d R} E(R, \tau) \quad \text { and } \\
& \text { on both Classical and Quantum sides of the correspondence. }
\end{aligned}
$$

\Longrightarrow If the ODE/IM correspondence is valid at $\tau=0$ it is also valid at $\tau \neq 0$!

Conclusions

I) The ODE/IM correspondence is valid also in $T \bar{T}$ deformed integrable models.
2) The analysis can be done for generic polynomial potential and for a wide class of models (the outcome is the same)
3) The interpretation of this result in the Amplitudes/Wilson loop AdS/CFT framework is still missing.

Thank you for your attention !!

