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(Smirnov, Zamolodchikov)

Introduction and Motivation ... coueuemm

TTbar proper deformation: one-parameter family of formal “actions” A,

g _
Ao = /(TT)a(x) d*z TT ocdetT),
“irrelevant” Opel“atOf

Solvable deformation

S-matrix:  Sa(0) = Sp(0) exp (_@‘QM2 sinh 9) rapid growth of the 2 — 2 scattering phase.

Remaining of the talk: a7 =1

Are there other deformations with a qualitative similar behaviour?

Is the behaviour of the scattering phase a necessary condition?



Conventional Relativistic QFT

spatial coordinate of the 2D space-time is compactified on a circle of circumference R

W/ ground-state energy

€0

Bulk vacuum density

¢  Central Charge



(Smirnov, Zamolodchikov)

T Thbar proper

(Cavaglia, Negro, Szécsényi, Tateo)

Ground State Energy E.(R) = Ey(R — aEy(R))

(a) a <0 (b) >0
Figure 2: Finite-size ground state energy of the TTbar deformed theory. (a) a < 0. The graph

E.(R) shows the “turning point” at some finite R,, which signals the Hagedorn transition. (b)
a > 0. E,(R) shows no singularity at R = 0.

Primary branch or “physical”

This talk:  [negative o Two branches:

Secondary branch



Generalized TTbar and Integrable systems

(Smirnov, Zamolodchikov)

conserved local currents of higher Lorentz spins s+ 1, pairs of local fields (7541(2),05-1(2))

82T3_|_1(Z) = 8Z@3_1(Z)
Sine-Gordon: {s} of odd natural numbers: s = 1,3,5,7, ...

lim, o (Top1(2)Ts—1(2") — Os_1(2)O,4_1(2")) = TT®) (2') 4 derivatives

Notation: for negative s, i.e. for s > 0 we write ©_5_; as Ts.1 and T i1 as O, 1
aZTS_|_1(Z) = 82(:)3_1(2)

Family of deformations:




CDD Factors

following deformation of the elastic two-particle S-matrix

Siay(0) = Si01(0) P10y (0), Doy (0) = exp{ Z o sinh (s 6) }
s€27+1

Doy (0) is CDD factor
unitarity and crossing P(0)P(—0) =1, o (0) = O(im — 0)

Different basis

(I)pole(‘g) —

ﬂ sinh 6, + sinh 6

sinh #, — sinh § ’
p=1

(I){a} ((9) — (I)pole(e) (I)entire(‘g) )
Dentire () = €xp {z Z as sinh (s 9)}



TBA equations: Finite size ground state energy

“bosonic TBA” when 0 = +1 and “fermionic TBA” for ¢ = —1
Given S(0) let ¢(6)

1 d
p(0) = — —5log 5(9)

e(f)  pseudo-energy

TBA equations: €(0) = R cosh 6 — / p(0 —6") L(0") % L(#) := —o log (1 — 0'6_6(0))
Energy:
B(R) = — /OO cosh@L(H)%.



(Cavaglia, Negro, Szécsényi, Tateo)
TBA and TTbar proper deformations = == =

(Caselle, Fioravanti, Gliozzi, Tateo)

(LeClair)

Deformed S-matrix: S, (0) = So(#) exp (—iaM? sinh 0)

Deformed Kernel: Va0 —0") = po(0 — 0") — a cosh(f — 6)
o do B
ground state energy F,(R) Ey(R) = — / coshf L,(0|R) 7 Lo(0|R) := log (1 1 ea(GIR))

deformed TBA equation

/
6a(0|R):RCOSh9_/9004(6_9/>LQ(QI|R)%

Thus: Deformed Energy:

Ga(e‘R) — (R o aEa(R)) cosh 6 — / 900(9 R ‘9/) La(el‘R) C;—i_/ Ea(9|R) — 60(8|R o aEa(R))



The Models Considered

CDD deformations of the trivial (fermionic or bosonic) S-matrix

S(0) = o ﬂ z:sinup—l—sinhﬁ
p=1

i sinu, — sinh 6

o = — (resp. 0 = +) corresponds to the fermionic (resp. bosonic) case

Restrictions: periodicity —m < Re(up) < m

poles 0, = iu,

One stable particle: stable particles of mass 2M cos(uy/2)

real positive u,

Not allowed!

analytic requirements



Fermionic:

The 1CDD models

(a) u1 € Rand -7 < up <0,

(b) Ul = —7T/2—|—i6’0 and 0y € R.

case (a) S-matrix of the sinh-Gordon model

7sinuq + sinh 6

Sna(0) =  isin u1 — sinh 0
case (b) S-matrix of the “staircase model”
sinh 6 — 7 cosh 6
Sstair(e) — (90 cR

sinh @ + ¢ cosh 6y ’

Bosonic version: Mussardo and Simon



The 2CDD model

7sinwuy + sinh @ 7 sin uy + sinh 6

S 0) =
2c0p(0) =0 1 sinuy — sinh 6 ¢ sin us — sinh

(a) u; € R and —7w < uy <0,
ug € R and —m < ug < 0,

(b) 0y € R and uq :—7T/2—|—i90,
’UQERand—7T<’LL2<O,

(b’) u1 € R and —7 < up <0,
0y € R and wuy :—7T/2—|—i90,

(¢) g € R and uy = —7/2 + 16y,
0, € R and ug = —m/2 + i6],

(d) peR, vye (—n/2,7/2), uy =y — /2 + 16y and uz = uj.

3CDD, 4CDD, ....



Narrow Resonance Limit (NRL)

special limit v — 5 kernel : two Dirac ¢ functions

TBA becomes the difference equation

Y(0|R) = e M1 — 6V (0 + 69| R)]7[1 — oY (0 — 6| R)]°

where Y(0|R) = e—€(0|R) grid points 0 € (—60q,6y) + 0Z

Notation:  fermionic case (¢ = —1) bosonic case (o = +1)



NRL: Fermionic Case

Introducing yr = Y (6 + k) and g, = e ftcosh(0+kbo)

NRL equations: vk = gx(1 +yk-1)1 + Y1) (K €Z)

truncating the system for some |k| < m , since g5 and y; decay very rapidly with R

and 6y, and hence with k

m =1

Yo = 1 — e—RcoshHQ 4+ %GR(l—I—Qcosh@o) (1 + \/1 _ 4€—R(1—|—cosh90)(1 + e—RcoshQO)) .

branching point depends on the choice of 0 lattice.



Op =2 and x = 1.75 L = 1Og(R/2)

Case: (90 =0

Simple algebraic equation




TBA: Iterative SOlUtion (Fring, Korff, Schulz)

The equations can be solved analytically for a very few cases

L] dB
lterative Procedure: €n(0) = Rcoshf + o / p(0 —0")log [1 — ge~en-1(0 >} -
nll—>rl£>lo en(0) = ¢(0) And €o(f) = Rcoshd

The convergence and uniqueness has been proven rigorously for the fermionic case with
df
= — <1
lelly = [ 160)] 5 <
Note:  |[¢ncopll; =N

positive “critical radius” R, > 0 such that for R < R, the iterative routine stops converging



Sta| rcase M Od el (Al. Zamolodchikov) 3 C D D ’S (M. Martins)

4
U1 = —?
S0 — sinh @ — 1cosh 6 1 1
)= sinh & +icoshfy Uz = g(—zﬂ +3ia)  uz = Z(=27 — 3ia)
 ————r—T—r—T——1 - T T 1 T T T T
R S S 3 e - ]
= 0.6 | 4 ) - (b) ]
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conformal minimal models M, the minimal model of the Wi(A,)
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Ground-state energies for various
models

F: fermionic B: bosonic

Casimir behaviour: R4

Square root behavior: R



The pseudo-arc-length continuation method

(Allgower, Georg)

critical points turning points. %C(R) diverges (no bifurcations)

truncate and discretize the real f-line on a N-point lattice {0, | k =1,2,..., N}

RY xR — RV 1
H : Hy(€,R) = —€j + Rcosh 6 — %;Aﬁgokllog (1—|—e_€l>

fixed-point condition H (€, R) = 0.

Goal: follow a curve: H(C(s)) =0 starting point C; = (&, R;) final one Cy = (€, Ry)

Solution: a good parematrization: s  arc-length of

. d g
initial value problem H'(C(s))C(s) =0, 1O =1,  C(s;) = (&, Ry) C(s) = ( r )



Steps

Predictor

tj

(0 0 R
(€9, RY)) = (&, Ry) + 65 ||

il
Moving in the curve:

H'(€j, R;)t; = 0.
Corrector

point actually lying on the solution curve

Newton’s method N x (N +1)

inverse of the Jacobian for the quasi-inverse of the extended Jacobian



Example of the PALC continuation

\ \ \ \ \
0
~10 2CDD Fermionic
el fo = 1/2 and ~ = 37/20
o primary branch S, R 0=1/2 and v =37/
o secondary branch | Tt
~30} |7 linear it | T i
— _ % Ki(R) u.,@%.
emraes square root fit
| | | | | | | |
0 2 4 6 8 10 12 14
R
primary branch E(R) ~ —=Ki(R)+0O(e™28) |
R—oco T
secondary branch E(R) ~ —¢_R



Case 1:

Results 2CDD model

Some analytical results: large- R behaviors

do’

d(0) = Rcosh@ , x(0) = / (0 — 0" log [1 + 6—6(9’)} o
m

Forr R — o0 d(f) ~R

Condition: either €(0), x(0) or both ~ R

e(0) ~ d), x(0) < d(9)

R—o0 R—o0

/
d0 ~ 2(0) e <« Rcosh#

x(0) ~ / (6 — 0" log [1 + e_RCOShGI] e = S



db’
Possible if there is a solution to: f(‘9) = —cosh 6 + / (0 — 9/) f(9/) o
©

Necessary condition:

do’
N>/¢(9M—9’)%>1 — N>1

©

where v € © f(On) = Max f(1))]



Numerical Results

representative case (d)

300
R=5
— R=—
2001 | |=R=0.29
. — R =0.29
S:i 100 | 1 |l— R=29
— R =05
0 i
| | ‘ ‘ | | | 6o = 2 and v = 47 /10
—6 —4 —2 0 2 4 6
0
e(0) for the secondary branch solution (blue) : iterative solution (red)
) o grow with 6y and decreases
Just oneinterval: © ={0 e R| —A <0 < A} |

with ~



Cont.

Fermionic: R approaches the critical value R,

R = 0.0257
— R = 0.0225 0p = 5
41 /\ | |— R = 0.0200
s — R =0.0193
— R =10.0193 v =4r /10
21 1 |— R = 0.0200
R = 0.0225
; R = 0.0257 R, ~ 0.0192
\ \ \ \ \ \ \
—6 -4 =2 0 2 4 6
0

L(0) for both the primary (red) and secondary (blue)

Recall: L(@) = —0 log (1 _ 0-6_6(8))
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v/

(a) v dependence of x,.

—10

I
— Fermionic ||
— Bosonic

||
0 5 10

to

(b) 89 dependence of x, with v =27 /5

Non-Linear Fitting:

they agree up to errors greater

a(0) +b(0)\/—.(0) + =

than

Independent of

our minimal working precision

several values of fy and for 7 in the range 0 < v < (99/200)7

0



Bosonic Case

PALC method jumps back to the iterative solution

pair of complex conjugate zeros of z(0) = 1 — e~€(9) is approaching the real axis

Solution: map between fermionic and bosonic TBA equations

If: (@) is a solution of the bosonic TBA equation

€(0) = log [66(9) - 1] IS a solution of the fermionic TBA equation
with kernel p(0) = ¢(0) + 2m4(0)

bosonic NCDD model

Conclusion: , , o
is equivalent to the (/N 4 1)CDD fermionic TBA

taken in the limit when uyi1 — 0



Conclusions and Open Problems

Physics of the secondary branch

For R < R. complex energy
Physical conditions for formation of the singularity

Analytical proofs: square root behaviour, independence on theta, size of the
negative interval, more CDDs

CDD'’s with entire part as well; massless cases



I'hank you very much!
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