On Factorizable S-matrices, Generalized TTbar, and the Hagedorn Transition

Thiago Fleury

Collaborators

Giancarlo Camilo

Máté Lencsés

Stefano Negro

Alexander Zamolodchikov

Outline

- Motivations and Introduction
- Integrability and the generalized TTbar deformations
- Thermodynamic Bethe Ansatz
- Results for many models: primary and secondary branch
- Conclusions and open questions

Introduction and Motivation

TTbar proper deformation: one-parameter family of formal "actions" \mathcal{A}_{α}

$$
\begin{gathered}
\frac{d}{d \alpha} \mathcal{A}_{\alpha}=\int(T \bar{T})_{\alpha}(x) d^{2} x, \quad T \bar{T} \propto \operatorname{det} T_{\mu \nu} \\
\text { "irrelevant" operator }
\end{gathered}
$$

Solvable deformation

S-matrix: $\quad S_{\alpha}(\theta)=S_{0}(\theta) \exp \left(-i \alpha M^{2} \sinh \theta\right) \quad$ rapid growth of the $2 \rightarrow 2$ scattering phase.

$$
\text { Remaining of the talk: } \quad M=1
$$

Are there other deformations with a qualitative similar behaviour?

Is the behaviour of the scattering phase a necessary condition?

Conventional Relativistic QFT

spatial coordinate of the 2D space-time is compactified on a circle of circumference R

c Central Charge

$$
E_{\alpha}(R)=E_{0}\left(R-\alpha E_{\alpha}(R)\right)
$$

(a) $\alpha<0$

(b) $\alpha>0$

Figure 2: Finite-size ground state energy of the TTbar deformed theory. (a) $\alpha<0$. The graph $E_{\alpha}(R)$ shows the "turning point" at some finite R_{*}, which signals the Hagedorn transition. (b) $\alpha>0$. $E_{\alpha}(R)$ shows no singularity at $R=0$.

This talk:

Generalized TTbar and Integrable systems

conserved local currents of higher Lorentz spins $s+1$, pairs of local fields $\left(T_{s+1}(z), \Theta_{s-1}(z)\right)$

$$
\partial_{\bar{z}} T_{s+1}(z)=\partial_{\mathrm{z}} \Theta_{s-1}(z)
$$

Sine-Gordon: $\quad\{s\}$ of odd natural numbers: $s=1,3,5,7, \ldots$

$$
\lim _{z \rightarrow z^{\prime}}\left(T_{s+1}(z) \bar{T}_{s-1}\left(z^{\prime}\right)-\Theta_{s-1}(z) \bar{\Theta}_{s-1}\left(z^{\prime}\right)\right)=T \bar{T}^{(s)}\left(z^{\prime}\right)+\text { derivatives }
$$

Notation: for negative s, i.e. for $s>0$ we write Θ_{-s-1} as \bar{T}_{s+1} and T_{-s+1} as $\bar{\Theta}_{s-1}$

$$
\partial_{z} \bar{T}_{s+1}(z)=\partial_{\bar{z}} \bar{\Theta}_{s-1}(z)
$$

Family of deformations:

$$
\frac{\partial \mathcal{A}_{\{\alpha\}}}{\partial \alpha_{s}}=\int T \bar{T}_{\{\alpha\}}^{(s)}(x) d^{2} x .
$$

CDD Factors

following deformation of the elastic two-particle S-matrix

$$
S_{\{\alpha\}}(\theta)=S_{\{0\}}(\theta) \Phi_{\{\alpha\}}(\theta), \quad \Phi_{\{\alpha\}}(\theta)=\exp \left\{-i \sum_{s \in 2 \mathbb{Z}+1} \alpha_{s} \sinh (s \theta)\right\}
$$

$$
\Phi_{\{\alpha\}}(\theta) \text { is } \quad \text { CDD factor }
$$

unitarity and crossing

$$
\Phi(\theta) \Phi(-\theta)=1, \quad \Phi(\theta)=\Phi(i \pi-\theta)
$$

Different basis

$$
\Phi_{\{\alpha\}}(\theta)=\Phi_{\text {pole }}(\theta) \Phi_{\text {entire }}(\theta), \quad \begin{aligned}
& \Phi_{\text {pole }}(\theta)=\prod_{p=1}^{N} \frac{\sinh \theta_{p}+\sinh \theta}{\sinh \theta_{p}-\sinh \theta} \\
& \Phi_{\text {entire }}(\theta)=\exp \left\{-i \sum_{s} a_{s} \sinh (s \theta)\right\}
\end{aligned}
$$

TBA equations: Finite size ground state energy

"bosonic TBA" when $\sigma=+1$ and "fermionic TBA" for $\sigma=-1$

$$
\begin{aligned}
& \text { Given } S(\theta) \quad \text { let } \varphi(\theta) \\
& \varphi(\theta)=\frac{1}{i} \frac{d}{d \theta} \log S(\theta)
\end{aligned}
$$

$$
\epsilon(\theta) \quad \text { pseudo-energy }
$$

TBA equations: $\quad \epsilon(\theta)=R \cosh \theta-\int \varphi\left(\theta-\theta^{\prime}\right) L\left(\theta^{\prime}\right) \frac{d \theta^{\prime}}{2 \pi} \quad L(\theta):=-\sigma \log \left(1-\sigma e^{-\epsilon(\theta)}\right)$

Energy:

$$
E(R)=-\int_{-\infty}^{\infty} \cosh \theta L(\theta) \frac{d \theta}{2 \pi} .
$$

TBA and TTbar proper deformations

$$
\text { Deformed S-matrix: } \quad S_{\alpha}(\theta)=S_{0}(\theta) \exp \left(-i \alpha M^{2} \sinh \theta\right)
$$

Deformed Kernel:

$$
\varphi_{\alpha}\left(\theta-\theta^{\prime}\right)=\varphi_{0}\left(\theta-\theta^{\prime}\right)-\alpha \cosh \left(\theta-\theta^{\prime}\right)
$$

ground state energy $E_{\alpha}(R)$

$$
E_{\alpha}(R)=-\int_{-\infty}^{\infty} \cosh \theta L_{\alpha}(\theta \mid R) \frac{d \theta}{2 \pi} \quad L_{\alpha}(\theta \mid R):=\log \left(1+e^{-\epsilon_{\alpha}(\theta \mid R)}\right)
$$

deformed TBA equation

$$
\epsilon_{\alpha}(\theta \mid R)=R \cosh \theta-\int \varphi_{\alpha}\left(\theta-\theta^{\prime}\right) L_{\alpha}\left(\theta^{\prime} \mid R\right) \frac{d \theta^{\prime}}{2 \pi}
$$

Thus:

$$
\epsilon_{\alpha}(\theta \mid R)=\left(R-\alpha E_{\alpha}(R)\right) \cosh \theta-\int \varphi_{0}\left(\theta-\theta^{\prime}\right) L_{\alpha}\left(\theta^{\prime} \mid R\right) \frac{d \theta^{\prime}}{2 \pi} \quad \epsilon_{\alpha}(\theta \mid R)=\epsilon_{0}\left(\theta \mid R-\alpha E_{\alpha}(R)\right)
$$

The Models Considered

CDD deformations of the trivial (fermionic or bosonic) S-matrix

$$
S(\theta)=\sigma \prod_{p=1}^{N} \frac{i \sin u_{p}+\sinh \theta}{i \sin u_{p}-\sinh \theta}
$$

$\sigma=-$ (resp. $\sigma=+$) corresponds to the fermionic (resp. bosonic) case

Restrictions: periodicity $-\pi<\operatorname{Re}\left(u_{p}\right)<\pi$

One stable particle:
poles $\theta_{p}=i u_{p}$ stable particles of mass $2 M \cos \left(u_{p} / 2\right)$ real positive u_{p}

Not allowed!

analytic requirements

The 1CDD models

$$
\text { (a) } u_{1} \in \mathbb{R} \text { and }-\pi<u_{1}<0
$$

$$
\text { (b) } u_{1}=-\pi / 2+i \theta_{0} \text { and } \theta_{0} \in \mathbb{R}
$$

Fermionic:

$$
\begin{aligned}
& \text { case (a) } \begin{array}{l}
S \text {-matrix of the sinh-Gordon model } \\
\qquad \begin{array}{l}
\text { shG } \\
(\theta)=-\frac{i \sin u_{1}+\sinh \theta}{i \sin u_{1}-\sinh \theta} \\
\text { case (b) } \\
S \text {-matrix of the "staircase model" } \\
\\
S_{\text {stair }}(\theta)=\frac{\sinh \theta-i \cosh \theta_{0}}{\sinh \theta+i \cosh \theta_{0}}, \quad \theta_{0} \in \mathbb{R}
\end{array}
\end{array} .
\end{aligned}
$$

The 2CDD model

$$
S_{2 \mathrm{CDD}}(\theta)=\sigma \frac{i \sin u_{1}+\sinh \theta}{i \sin u_{1}-\sinh \theta} \frac{i \sin u_{2}+\sinh \theta}{i \sin u_{2}-\sinh \theta}
$$

(a) $u_{1} \in \mathbb{R}$ and $-\pi<u_{1}<0$, $u_{2} \in \mathbb{R}$ and $-\pi<u_{2}<0$,
(b) $\theta_{0} \in \mathbb{R}$ and $u_{1}=-\pi / 2+i \theta_{0}$, $u_{2} \in \mathbb{R}$ and $-\pi<u_{2}<0$,
(b') $u_{1} \in \mathbb{R}$ and $-\pi<u_{1}<0$, $\theta_{0} \in \mathbb{R}$ and $u_{2}=-\pi / 2+i \theta_{0}$,
(c) $\theta_{0} \in \mathbb{R}$ and $u_{1}=-\pi / 2+i \theta_{0}$, $\theta_{0}^{\prime} \in \mathbb{R}$ and $u_{2}=-\pi / 2+i \theta_{0}^{\prime}$,
(d) $\theta_{0} \in \mathbb{R}, \gamma \in(-\pi / 2, \pi / 2), u_{1}=\gamma-\pi / 2+i \theta_{0}$ and $u_{2}=u_{1}^{*}$.

3CDD, 4CDD,

Narrow Resonance Limit (NRL)

special limit $\gamma \rightarrow \frac{\pi}{2} \quad$ kernel : two Dirac δ functions

TBA becomes the difference equation

$$
Y(\theta \mid R)=e^{-R \cosh \theta}\left[1-\sigma Y\left(\theta+\theta_{0} \mid R\right)\right]^{-\sigma}\left[1-\sigma Y\left(\theta-\theta_{0} \mid R\right)\right]^{-\sigma}
$$

where $\quad Y(\theta \mid R)=e^{-\epsilon(\theta \mid R)}$ grid points $\theta \in\left(-\theta_{0}, \theta_{0}\right)+\theta_{0} \mathbb{Z}$

Notation: fermionic case $(\sigma=-1) \quad$ bosonic case $(\sigma=+1)$

NRL: Fermionic Case

$$
\text { Introducing } y_{k}=Y\left(\theta+k \theta_{0}\right) \text { and } \quad g_{k}=e^{-R \cosh \left(\theta+k \theta_{0}\right)}
$$

$$
\text { NRL equations: } \quad y_{k}=g_{k}\left(1+y_{k-1}\right)\left(1+y_{k+1}\right) \quad(k \in \mathbb{Z})
$$

truncating the system for some $|k| \leq m$, since g_{k} and y_{k} decay very rapidly with R

$$
\text { and } \theta_{0}, \text { and hence with } k
$$

$$
m=1
$$

$$
y_{0}=-1-e^{-R \cosh \theta_{0}}+\frac{1}{2} e^{R\left(1+2 \cosh \theta_{0}\right)}\left(1 \pm \sqrt{1-4 e^{-R\left(1+\cosh \theta_{0}\right)}\left(1+e^{-R \cosh \theta_{0}}\right)}\right) .
$$

branching point depends on the choice of θ lattice.

$$
m=8
$$

$$
\theta_{0}=2 \text { and } x=1.75 \quad x=\log (R / 2)
$$

$$
\text { Case: } \quad \theta_{0}=0
$$

Simple algebraic equation

TBA: Iterative Solution

The equations can be solved analytically for a very few cases

$$
\begin{aligned}
& \text { Iterative Procedure: } \quad \epsilon_{n}(\theta)=R \cosh \theta+\sigma \int \varphi\left(\theta-\theta^{\prime}\right) \log \left[1-\sigma e^{-\epsilon_{n-1}\left(\theta^{\prime}\right)}\right] \frac{d \theta}{2 \pi} \\
& \qquad \lim _{n \rightarrow \infty} \epsilon_{n}(\theta)=\epsilon(\theta) \quad \text { And } \quad \epsilon_{0}(\theta)=R \cosh \theta
\end{aligned}
$$

The convergence and uniqueness has been proven rigorously for the fermionic case with

$$
\|\varphi\|_{1}:=\int|\varphi(\theta)| \frac{d \theta}{2 \pi} \leq 1
$$

Note: $\quad\left\|\varphi_{N C D D}\right\|_{1}=N$
positive "critical radius" $R_{*}>0$ such that for $R \leq R_{*}$ the iterative routine stops converging

Staircase Model

$$
S(\theta)=\frac{\sinh \theta-\mathrm{i} \cosh \theta_{0}}{\sinh \theta+\mathrm{i} \cosh \theta_{0}}
$$

$$
c_{p}=1-6 /(p(p+1))
$$

conformal minimal models \mathcal{M}_{p}

$$
\begin{gathered}
u_{1}=-\frac{4 \pi}{3} \\
u_{2}=\frac{1}{3}(-2 \pi+3 i a) \quad u_{3}=\frac{1}{3}(-2 \pi-3 i a)
\end{gathered}
$$

$$
c=2[1-12 / p(p+1)], p=4,5, \ldots
$$

the minimal model of the $W\left(A_{2}\right)$

Two Branches

$$
E(R) \underset{R \rightarrow R_{*}^{+}}{\sim} c_{0}+c_{1 / 2} \sqrt{R-R_{*}}+\mathcal{O}\left(R-R_{*}\right)
$$

$$
\tilde{E}(R) \underset{R \rightarrow R_{*}^{+}}{\sim} c_{0}-c_{1 / 2} \sqrt{R-R_{*}}+\mathcal{O}\left(R-R_{*}\right)
$$

Ground-state energies for various models

F: fermionic
B: bosonic

Casimir behaviour: R^{4}

Square root behavior: R

The pseudo-arc-length continuation method

$$
\begin{array}{rlll}
H: \quad \mathbb{R}^{N} \times \mathbb{R} & \longrightarrow \mathbb{R}^{N} \\
(\vec{\epsilon}, R) & \longmapsto \vec{H}(\vec{\epsilon}, R)
\end{array}, \quad \quad H_{k}(\vec{\epsilon}, R)=-\epsilon_{k}+R \cosh \theta_{k}-\frac{1}{2 \pi} \sum_{l} \Delta \theta \varphi_{k l} \log \left(1+e^{-\epsilon_{l}}\right)
$$

$$
\text { fixed-point condition } \quad \vec{H}(\vec{\epsilon}, R)=\overrightarrow{0} \text {. }
$$

Goal: follow a curve: $\quad \vec{H}(C(s))=\overrightarrow{0} \quad$ starting point $C_{i}=\left(\vec{\epsilon}_{i}, R_{i}\right) \quad$ final one $C_{f}=\left(\vec{\epsilon}_{f}, R_{f}\right)$

Solution: a good parematrization: s arc-length of C
initial value problem

$$
H^{\prime}(C(s)) \dot{C}(s)=\overrightarrow{0}, \quad\|\dot{C}(s)\|=1, \quad C\left(s_{i}\right)=\left(\vec{\epsilon}_{i}, R_{i}\right) \quad \dot{C}(s)=\left(\frac{\frac{d}{d s} \vec{\epsilon}}{\frac{d}{d s} R}\right)
$$

Steps

Predictor

$$
\left(\vec{\epsilon}_{j+1}^{(0)}, R_{j+1}^{(0)}\right)=\left(\vec{\epsilon}_{j}, R_{j}\right)+\delta s \frac{t_{j}}{\left\|t_{j}\right\|},
$$

Moving in the curve:

$$
H^{\prime}\left(\vec{\epsilon}_{j}, R_{j}\right) t_{j}=0 .
$$

Corrector

point actually lying on the solution curve

$$
\text { Newton's method } \quad N \times(N+1)
$$

inverse of the Jacobian for the quasi-inverse of the extended Jacobian

Example of the PALC continuation

2CDD Fermionic
$\theta_{0}=1 / 2$ and $\gamma=3 \pi / 20$
primary branch $\quad E(R) \underset{R \rightarrow \infty}{\sim}-\frac{1}{\pi} K_{1}(R)+\mathcal{O}\left(e^{-2 R}\right)$,
secondary branch

$$
\tilde{E}(R) \underset{R \rightarrow \infty}{\sim}-\varepsilon_{-} R
$$

Results 2CDD model

Some analytical results: large- R behaviors

$$
\begin{gathered}
\epsilon(\theta)=d(\theta)-\chi(\theta) \\
d(\theta)=R \cosh \theta, \quad \chi(\theta)=\int \varphi\left(\theta-\theta^{\prime}\right) \log \left[1+e^{-\epsilon\left(\theta^{\prime}\right)}\right] \frac{d \theta^{\prime}}{2 \pi}
\end{gathered}
$$

$$
\text { For: } \quad R \rightarrow \infty \quad d(\theta) \sim R
$$

Condition: \quad either $\epsilon(\theta), \chi(\theta)$ or both $\sim R$

$$
\epsilon(\theta) \underset{R \rightarrow \infty}{\sim} d(\theta), \quad \chi(\theta) \underset{R \rightarrow \infty}{\ll} d(\theta)
$$

Case 1:

$$
\chi(\theta) \underset{R \rightarrow \infty}{\sim} \int \varphi\left(\theta-\theta^{\prime}\right) \log \left[1+e^{-R \cosh \theta^{\prime}}\right] \frac{d \theta^{\prime}}{2 \pi} \underset{R \rightarrow \infty}{\sim} \frac{\varphi(\theta)}{\sqrt{2 \pi R}} e^{-R} \underset{R \rightarrow \infty}{<} R \cosh \theta
$$

Case 2:

$$
\epsilon(\theta) \underset{R \rightarrow \infty}{\sim}-R f(\theta), \quad \begin{cases}f(\theta)>0, & \theta \in \Theta \subset \mathbb{R}, \\ f(\theta) \leq 0 & \theta \in \Theta^{\perp}=\mathbb{R}-\Theta\end{cases}
$$

$$
\text { and } \quad \chi(\theta) \sim \epsilon(\theta)
$$

Possible if there is a solution to: $\quad f(\theta)=-\cosh \theta+\int_{\Theta} \varphi\left(\theta-\theta^{\prime}\right) f\left(\theta^{\prime}\right) \frac{d \theta^{\prime}}{2 \pi}$.

Necessary condition:

$$
N>\int_{\Theta} \varphi\left(\theta_{\mathrm{M}}-\theta^{\prime}\right) \frac{d \theta^{\prime}}{2 \pi}>1 \quad \Longrightarrow \quad N>1
$$

$$
\text { where } \quad \theta_{\mathrm{M}} \in \Theta \quad f\left(\theta_{\mathrm{M}}\right)=\operatorname{Max}_{t \in \Theta}[f(t)]
$$

Numerical Results

representative case (d)

grow with θ_{0} and decreases
Just one interval: $\quad \Theta=\{\theta \in \mathbb{R} \mid-\Lambda \leq \theta \leq \Lambda\}$ with γ

Cont.

Fermionic: $\quad R$ approaches the critical value R_{*}

$L(\theta)$ for both the primary (red) and secondary (blue)

Recall: $\quad L(\theta):=-\sigma \log \left(1-\sigma e^{-\epsilon(\theta)}\right)$

Cont.

(a) γ dependence of x_{*}.

(b) θ_{0} dependence of x_{*} with $\gamma=2 \pi / 5$

Non-Linear Fitting: $\quad a(\theta)+b(\theta) \sqrt{-x_{*}(\theta)+x}$. Independent of
they agree up to errors greater than our minimal working precision

Bosonic Case

PALC method jumps back to the iterative solution

pair of complex conjugate zeros of $z(\theta)=1-e^{-\epsilon(\theta)}$ is approaching the real axis

Solution: map between fermionic and bosonic TBA equations

$$
\begin{gathered}
\text { If: } \epsilon(\theta) \quad \text { is a solution of the bosonic TBA equation } \\
\tilde{\epsilon}(\theta)=\log \left[e^{\epsilon(\theta)}-1\right] \quad \text { is a solution of the fermionic TBA equation }
\end{gathered}
$$

$$
\text { with kernel } \quad \tilde{\varphi}(\theta)=\varphi(\theta)+2 \pi \delta(\theta)
$$

bosonic N CDD model
Conclusion:

$$
\text { is equivalent to the }(N+1) \mathrm{CDD} \text { fermionic TBA }
$$

taken in the limit when $u_{N+1} \rightarrow 0$

Conclusions and Open Problems

- Physics of the secondary branch
- For $R<R_{*}$ complex energy
- Physical conditions for formation of the singularity
- Analytical proofs: square root behaviour, independence on theta, size of the negative interval, more CDDs
- CDD's with entire part as well; massless cases

Thank you very much!

