On Factorizable S-matrices, Generalized TTbar, and the Hagedorn Transition

Thiago Fleury

Collaborators

Giancarlo Camilo

Máté Lencsés

Stefano Negro

Alexander Zamolodchikov

Motivations and Introduction

Integrability and the generalized TTbar deformations

• Thermodynamic Bethe Ansatz

Results for many models: primary and secondary branch

Conclusions and open questions

Introduction and Motivation

(Smirnov, Zamolodchikov) (Dubovsky,Gorbenko,Mirbabayi)

TTbar proper deformation:

one-parameter family of formal "actions" \mathcal{A}_{α}

$$\frac{d}{d\alpha}\mathcal{A}_{\alpha} = \int (T\bar{T})_{\alpha}(x) d^{2}x , \qquad T\bar{T} \propto \det T_{\mu\nu}$$

"irrelevant" operator

Solvable deformation

S-matrix: $S_{\alpha}(\theta) = S_0(\theta) \exp\left(-i\alpha M^2 \sinh\theta\right)$ rapid growth of the $2 \to 2$ scattering phase.

Remaining of the talk: M = 1

Are there other deformations with a qualitative similar behaviour?

Is the behaviour of the scattering phase a necessary condition?

Conventional Relativistic QFT

spatial coordinate of the 2D space-time is compactified on a circle of circumference R

c Central Charge

TTbar proper

(Smirnov, Zamolodchikov)

(Cavaglià, Negro, Szécsényi, Tateo)

Figure 2: Finite-size ground state energy of the TTbar deformed theory. (a) $\alpha < 0$. The graph $E_{\alpha}(R)$ shows the "turning point" at some finite R_* , which signals the Hagedorn transition. (b) $\alpha > 0$. $E_{\alpha}(R)$ shows no singularity at R = 0.

This talk:

negative α

Two branches:

Primary branch or "physical"

Secondary branch

Generalized TTbar and Integrable systems

(Smirnov, Zamolodchikov)

conserved local currents of higher Lorentz spins s+1, pairs of local fields $(T_{s+1}(z), \Theta_{s-1}(z))$

$$\partial_{\bar{z}} T_{s+1}(z) = \partial_{z} \Theta_{s-1}(z)$$

Sine-Gordon: $\{s\}$ of odd natural numbers: s = 1, 3, 5, 7, ...

$$\lim_{z \to z'} (T_{s+1}(z)\bar{T}_{s-1}(z') - \Theta_{s-1}(z)\bar{\Theta}_{s-1}(z')) = T\bar{T}^{(s)}(z') + \text{derivatives}$$

Notation: for negative s, i.e. for s > 0 we write Θ_{-s-1} as \overline{T}_{s+1} and T_{-s+1} as $\overline{\Theta}_{s-1}$ $\partial_{z}\overline{T}_{s+1}(z) = \partial_{\overline{z}}\overline{\Theta}_{s-1}(z)$

Family of deformations:

$$\frac{\partial \mathcal{A}_{\{\alpha\}}}{\partial \alpha_s} = \int T \bar{T}^{(s)}_{\{\alpha\}}(x) \, d^2 x \; .$$

CDD Factors

following deformation of the elastic two-particle S-matrix

$$S_{\{\alpha\}}(\theta) = S_{\{0\}}(\theta) \Phi_{\{\alpha\}}(\theta), \qquad \Phi_{\{\alpha\}}(\theta) = \exp\left\{-i \sum_{s \in 2\mathbb{Z}+1} \alpha_s \sinh(s\theta)\right\}$$

 $\Phi_{\{\alpha\}}(\theta)$ is CDD factor

unitarity and crossing $\Phi(\theta)\Phi(-\theta) = 1$, $\Phi(\theta) = \Phi(i\pi - \theta)$

Different basis

$$\Phi_{\text{pole}}(\theta) = \prod_{p=1}^{N} \frac{\sinh \theta_p + \sinh \theta}{\sinh \theta_p - \sinh \theta} ,$$

 $\Phi_{\{\alpha\}}(\theta) = \Phi_{\text{pole}}(\theta) \, \Phi_{\text{entire}}(\theta) \; ,$

$$\Phi_{\text{entire}}(\theta) = \exp\left\{-i\sum_{s} a_{s} \sinh\left(s\,\theta\right)\right\}$$

TBA equations: Finite size ground state energy

"bosonic TBA" when $\sigma = +1$ and "fermionic TBA" for $\sigma = -1$

Given $S(\theta)$ let $\varphi(\theta)$

$$\varphi(\theta) = \frac{1}{i} \frac{d}{d\theta} \log S(\theta)$$

 $\epsilon(heta)$ pseudo-energy

TBA equations:
$$\epsilon(\theta) = R \cosh \theta - \int \varphi(\theta - \theta') L(\theta') \frac{d\theta'}{2\pi}$$
 $L(\theta) := -\sigma \log \left(1 - \sigma e^{-\epsilon(\theta)}\right)$

Energy:

$$E(R) = -\int_{-\infty}^{\infty} \cosh\theta L(\theta) \frac{d\theta}{2\pi}$$
.

TBA and TTbar proper deformations

(Cavaglià, Negro, Szécsényi, Tateo) (Dubovsky, Flauger, Gorbenko) (Caselle, Fioravanti, Gliozzi, Tateo) (LeClair)

Deformed S-matrix:
$$S_{\alpha}(\theta) = S_0(\theta) \exp\left(-i\alpha M^2 \sinh\theta\right)$$

Deformed Kernel:
$$\varphi_{\alpha}(\theta - \theta') = \varphi_0(\theta - \theta') - \alpha \cosh(\theta - \theta')$$

ground state energy
$$E_{\alpha}(R)$$
 $E_{\alpha}(R) = -\int_{-\infty}^{\infty} \cosh\theta \ L_{\alpha}(\theta|R) \frac{d\theta}{2\pi}$ $L_{\alpha}(\theta|R) := \log\left(1 + e^{-\epsilon_{\alpha}(\theta|R)}\right)$

deformed TBA equation

$$\epsilon_{\alpha}(\theta|R) = R \cosh \theta - \int \varphi_{\alpha}(\theta - \theta') L_{\alpha}(\theta'|R) \frac{d\theta'}{2\pi}$$

Thus:

Deformed Energy:

$$\epsilon_{\alpha}(\theta|R) = (R - \alpha E_{\alpha}(R)) \cosh \theta - \int \varphi_0(\theta - \theta') L_{\alpha}(\theta'|R) \frac{d\theta'}{2\pi} \qquad \epsilon_{\alpha}(\theta|R) = \epsilon_0(\theta|R - \alpha E_{\alpha}(R))$$

The Models Considered

CDD deformations of the trivial (fermionic or bosonic) S-matrix

$$S(\theta) = \sigma \prod_{p=1}^{N} \frac{i \sin u_p + \sinh \theta}{i \sin u_p - \sinh \theta}$$

 $\sigma = -$ (resp. $\sigma = +$) corresponds to the fermionic (resp. bosonic) case

Restrictions:

periodicity $-\pi < 1$

$$-\pi < \operatorname{Re}(u_p) < \pi$$

One stable particle:

poles $\theta_p = i u_p$ real positive u_p

stable particles of mass $2M \cos(u_p/2)$

Not allowed!

analytic requirements

The 1CDD models

(a)
$$u_1 \in \mathbb{R}$$
 and $-\pi < u_1 < 0$,
(b) $u_1 = -\pi/2 + i\theta_0$ and $\theta_0 \in \mathbb{R}$.

case (a) S-matrix of the sinh-Gordon model

$$S_{\rm shG}(\theta) = -\frac{i\sin u_1 + \sinh \theta}{i\sin u_1 - \sinh \theta}$$

$$S_{\text{stair}}(\theta) = \frac{\sinh \theta - i \cosh \theta_0}{\sinh \theta + i \cosh \theta_0}, \qquad \theta_0 \in \mathbb{R}$$

Bosonic version: Mussardo and Simon

Fermionic:

The 2CDD model

$$S_{2\text{CDD}}(\theta) = \sigma \, \frac{i \sin u_1 + \sinh \theta}{i \sin u_1 - \sinh \theta} \frac{i \sin u_2 + \sinh \theta}{i \sin u_2 - \sinh \theta}$$

(a)
$$u_1 \in \mathbb{R}$$
 and $-\pi < u_1 < 0$,
 $u_2 \in \mathbb{R}$ and $-\pi < u_2 < 0$,

(b) $\theta_0 \in \mathbb{R}$ and $u_1 = -\pi/2 + i\theta_0$, $u_2 \in \mathbb{R}$ and $-\pi < u_2 < 0$,

(b')
$$u_1 \in \mathbb{R} \text{ and } -\pi < u_1 < 0,$$

 $\theta_0 \in \mathbb{R} \text{ and } u_2 = -\pi/2 + i\theta_0,$

(c)
$$\theta_0 \in \mathbb{R}$$
 and $u_1 = -\pi/2 + i\theta_0$,
 $\theta'_0 \in \mathbb{R}$ and $u_2 = -\pi/2 + i\theta'_0$,

(d) $\theta_0 \in \mathbb{R}, \gamma \in (-\pi/2, \pi/2), u_1 = \gamma - \pi/2 + i\theta_0 \text{ and } u_2 = u_1^*.$

Narrow Resonance Limit (NRL)

special limit $\gamma \to \frac{\pi}{2}$ kernel : two Dirac δ functions

TBA becomes the difference equation

$$Y(\theta|R) = e^{-R\cosh\theta} [1 - \sigma Y(\theta + \theta_0|R)]^{-\sigma} [1 - \sigma Y(\theta - \theta_0|R)]^{-\sigma}$$

where $Y(\theta|R) = e^{-\epsilon(\theta|R)}$ grid points $\theta \in (-\theta_0, \theta_0) + \theta_0 \mathbb{Z}$

Notation: fermionic case ($\sigma = -1$) bosonic case ($\sigma = +1$)

NRL: Fermionic Case

Introducing $y_k = Y(\theta + k\theta_0)$ and $g_k = e^{-R\cosh(\theta + k\theta_0)}$

NRL equations: $y_k = g_k(1+y_{k-1})(1+y_{k+1})$ $(k \in \mathbb{Z})$

truncating the system for some $|k| \leq m$, since g_k and y_k decay very rapidly with R

and θ_0 , and hence with k

$$m = 1$$

$$y_0 = -1 - e^{-R\cosh\theta_0} + \frac{1}{2}e^{R(1+2\cosh\theta_0)} \left(1 \pm \sqrt{1 - 4e^{-R(1+\cosh\theta_0)}(1 + e^{-R\cosh\theta_0})}\right).$$

branching point depends on the choice of θ lattice.

 $x = \log(R/2)$ $\theta_0 = 2 \text{ and } x = 1.75$

Case: $\theta_0 = 0$

Simple algebraic equation

TBA: Iterative Solution

(Fring, Korff, Schulz)

The equations can be solved analytically for a very few cases

Iterative Procedure:
$$\epsilon_n(\theta) = R \cosh \theta + \sigma \int \varphi(\theta - \theta') \log \left[1 - \sigma e^{-\epsilon_{n-1}(\theta')}\right] \frac{d\theta}{2\pi}$$

 $\lim_{n \to \infty} \epsilon_n(\theta) = \epsilon(\theta) \qquad \text{And} \qquad \epsilon_0(\theta) = R \cosh \theta$

The convergence and uniqueness has been proven rigorously for the fermionic case with

$$||\varphi||_1 := \int |\varphi(\theta)| \, \frac{d\theta}{2\pi} \le 1$$

Note: $||\varphi_{NCDD}||_1 = N$

positive "critical radius" $R_* > 0$ such that for $R \leq R_*$ the iterative routine stops converging

Staircase Model

(Al. Zamolodchikov)

(M. Martins)

$$u_1 = -\frac{4\pi}{3}$$

$$u_2 = \frac{1}{3}(-2\pi + 3ia)$$
 $u_3 = \frac{1}{3}(-2\pi - 3ia)$

$$S(\theta) = \frac{\sinh \theta - i \cosh \theta_0}{\sinh \theta + i \cosh \theta_0}.$$

 $c_p = 1 - 6/(p(p+1))$

conformal minimal models \mathcal{M}_p

 $c = 2[1 - 12/p(p+1)], p = 4, 5, \dots$

the minimal model of the $W(A_2)$

Two Branches

$$E(R) \sim_{R \to R_*^+} c_0 + c_{1/2} \sqrt{R - R_*} + \mathcal{O}(R - R_*)$$

$$\tilde{E}(R) \sim_{R \to R_*^+} c_0 - c_{1/2} \sqrt{R - R_*} + \mathcal{O}(R - R_*)$$

The pseudo-arc-length continuation method

(Allgower, Georg)

critical points turning points. $\frac{d}{dR}C(R)$ diverges (no bifurcations)

truncate and discretize the real θ -line on a N-point lattice $\{\theta_k \mid k = 1, 2, \dots, N\}$

$$H: \qquad \begin{array}{ccc} \mathbb{R}^N \times \mathbb{R} & \longrightarrow & \mathbb{R}^N \\ H: & & \\ (\vec{\epsilon}, R) & \longmapsto & \vec{H}(\vec{\epsilon}, R) \end{array}, \qquad \qquad H_k(\vec{\epsilon}, R) = -\epsilon_k + R \cosh \theta_k - \frac{1}{2\pi} \sum_l \Delta \theta \varphi_{kl} \log \left(1 + e^{-\epsilon_l}\right) \end{array}$$

fixed-point condition $\vec{H}(\vec{\epsilon}, R) = \vec{0}$.

Goal: follow a curve: $\vec{H}(C(s)) = \vec{0}$ starting point $C_i = (\vec{\epsilon}_i, R_i)$ final one $C_f = (\vec{\epsilon}_f, R_f)$

Solution: a good parematrization: s arc-length of C

initial value problem $H'(C(s))\dot{C}(s) = \vec{0}$, $||\dot{C}(s)|| = 1$, $C(s_i) = (\vec{\epsilon}_i, R_i)$ $\dot{C}(s) = \left(\frac{\frac{d}{ds}\vec{\epsilon}}{\frac{d}{ds}R}\right)$

Steps

Predictor

$$(\vec{\epsilon}_{j+1}^{(0)}, R_{j+1}^{(0)}) = (\vec{\epsilon}_j, R_j) + \delta s \, \frac{t_j}{||t_j||} ,$$

Moving in the curve:

 $H'(\vec{\epsilon}_j, R_j)t_j = 0$.

Corrector

point actually lying on the solution curve

Newton's method $N \times (N+1)$

inverse of the Jacobian for the quasi-inverse of the extended Jacobian

Results 2CDD model

Some analytical results: large-R behaviors

 $\epsilon(\theta) = d(\theta) - \chi(\theta) \;,$

$$d(\theta) = R \cosh \theta$$
, $\chi(\theta) = \int \varphi(\theta - \theta') \log \left[1 + e^{-\epsilon(\theta')}\right] \frac{d\theta'}{2\pi}$

For:
$$R \to \infty$$
 $d(\theta) \sim R$

Condition: either $\epsilon(\theta), \chi(\theta)$ or both $\sim R$

$$\epsilon(\theta) \underset{R \to \infty}{\sim} d(\theta) , \qquad \chi(\theta) \underset{R \to \infty}{\ll} d(\theta)$$

Case 1:

$$\chi(\theta) \underset{R \to \infty}{\sim} \int \varphi(\theta - \theta') \log \left[1 + e^{-R \cosh \theta'} \right] \frac{d\theta'}{2\pi} \underset{R \to \infty}{\sim} \frac{\varphi(\theta)}{\sqrt{2\pi R}} e^{-R} \underset{R \to \infty}{\ll} R \cosh \theta$$

Case 2:

$$\epsilon(\theta) \underset{R \to \infty}{\sim} -R \, f(\theta) \;, \qquad \left\{ \begin{array}{ll} f(\theta) > 0 \;, \quad \theta \in \Theta \subset \mathbb{R} \;, \\ f(\theta) \leq 0 \quad \quad \theta \in \Theta^{\perp} = \mathbb{R} - \Theta \end{array} \right.$$

and
$$\chi(\theta) \sim \epsilon(\theta)$$

Possible if there is a solution to:

$$f(\theta) = -\cosh \theta + \int_{\Theta} \varphi(\theta - \theta') f(\theta') \frac{d\theta'}{2\pi} .$$

Necessary condition:

$$N > \int_{\Theta} \varphi(\theta_{\mathrm{M}} - \theta') \frac{d\theta'}{2\pi} > 1 \implies N > 1$$

where $\theta_{\mathrm{M}} \in \Theta$ $f(\theta_{\mathrm{M}}) = \underset{t \in \Theta}{\mathrm{Max}} [f(t)]$

Just one interval: $\Theta = \{\theta \in \mathbb{R} \mid -\Lambda \leq \theta \leq \Lambda\}$

 $L(\theta)$ for both the primary (red) and secondary (blue)

Recall:
$$L(\theta) := -\sigma \log \left(1 - \sigma e^{-\epsilon(\theta)}\right)$$

Cont.

Non-Linear Fitting: $a(\theta) + b(\theta)\sqrt{-x_*(\theta) + x}$. Independent of θ

they agree up to errors greater than our minimal working precision

several values of θ_0 and for γ in the range $0 \leq \gamma \leq (99/200)\pi$

PALC method jumps back to the iterative solution

pair of complex conjugate zeros of $z(\theta) = 1 - e^{-\epsilon(\theta)}$ is approaching the real axis

Solution: map between fermionic and bosonic TBA equations

If: $\epsilon(\theta)$ is a solution of the bosonic TBA equation

 $\tilde{\epsilon}(\theta) = \log \left[e^{\epsilon(\theta)} - 1 \right]$ is a solution of the fermionic TBA equation

with kernel $\tilde{\varphi}(\theta) = \varphi(\theta) + 2\pi\delta(\theta)$

bosonic NCDD model

Conclusion:

is equivalent to the (N + 1)CDD fermionic TBA

taken in the limit when $u_{N+1} \to 0$

 θ_0

Conclusions and Open Problems

Physics of the secondary branch

• For $R < R_*$ complex energy

Physical conditions for formation of the singularity

- Analytical proofs: square root behaviour, independence on theta, size of the negative interval, more CDDs
- CDD's with entire part as well; massless cases

Thank you very much!

