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1 Introduction

The so-called TTbar deformations [1, 2] of two-dimensional quantum field theories
(QFTs) has brought about a renewed interest to UV properties of Renormalization
Group (RG) flows generated by higher dimensional (a.k.a. “irrelevant”) operators.
The TTbar deformation is defined as the one-parameter family of formal “actions” A↵,
determined by the flow

d

d↵
A↵ =

Z
(T T̄ )↵(x) d

2
x , (1.1)

where (T T̄ )↵(x) is a special composite operator built from the components of the
energy-momentum tensor associated with the theory A↵ [3]. The deformation (1.1)
has a number of notable properties. The theory A↵ is “solvable”, in the sense that
certain characteristics can be found exactly in terms of the corresponding ones in the
undeformed theory A↵=0. This is remarkable, because the deformation operator (T T̄ )↵
has exact dimension 4, meaning the perturbation in (1.1) is “irrelevant” in the RG
sense. Normally, such deformations are expected to break the short-distance structure
of the quantum field theory, generally rendering the theory UV incomplete, and possibly
violating causality at short scales. The abnormal UV properties of the theory A↵ are
manifest already in the short-scale behavior of its finite-size ground-state energy. If the
spatial coordinate of the 2D space-time is compactified on a circle of circumference R,
its ground-state energy E↵(R) is determined exactly, via the equation [1, 2]

E↵(R) = E0(R� ↵E↵(R)) , (1.2)

in terms of the ground state energy E0(R) of the undeformed theory, at ↵ = 0. The
equation (1.2) shows that, depending on the sign of the deformation parameter ↵, the
ground state energy either develops a square root singularity at some R⇤ ⇠ 1/

p
|↵|, or

has no short-distance singularity at all. Neither of these types of behavior is compatible
with the idea of QFT as the RG flow stemming out of a UV fixed point. The theory
defined by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover,
at negative ↵, the singularity at finite R signals a very fast growth of the density of
states at high energies, a common hallmark of string theories, leading to the Hagedorn
transition [5]. The behavior of E↵(R) at positive ↵ is possibly even more puzzling,
as it suggests a finite number of states per unit volume, an unlikely feature if one
thinks of a QFT as a system of continuously many interacting degrees of freedom,
unless quantum gravity is involved1. Therefore, the deformed theory determined by
(1.1) cannot be considered a conventional UV complete local QFT. At the same time,
however, the TTbar deformation has a number of robust features which makes one

1A relation of the TTbar deformation to the Jackiw-Teitelboim gravity was indeed proposed in [6, 7].
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reluctant to simply dismiss it as “pathological”. It is instead tempting to think that
the deformation (1.1) exemplifies some meaningful extension of the notion of local QFT.
In particular, an interesting interpretation of the theory A↵ in terms of its gravitational
dual was proposed in [8], where a relation to the state of the bulk gravity in the dual
theory was suggested. Several questions about 2D physics of the deformed theory need
to be elucidated in order to put such suggestions on a solid ground. For example, does
the deformation preserve any part of the local structure of QFT? Notice how the very
definition (1.1) depends of the notion of the energy-momentum tensor, conventionally a
part of such a local structure. Another important question concerns the macro-causality
in 2D space-time. While the deformation (1.1) with positive ↵ is suspected to display
super-luminal propagation [6, 8], the case of negative ↵ is most likely free from this
problem. We will not dwell on this question, as it is the negative-↵ deformation which
will be of interest to the present discussion. In any case, we believe it is important to
understand the physical origin of the above abnormal short-distance properties.

Another exact result about the theory A↵ concerns the deformation of its S-matrix,
whose elements di↵er from the corresponding undeformed ones by a universal phase
factor, available in closed form [6]. In particular, the 2 ! 2 elastic scattering amplitude
has the form

S↵(✓) = S0(✓) exp
�
�i↵M

2 sinh ✓
�
, (1.3)

where S0(✓) = S↵=0(✓) is the 2 ! 2 scattering amplitude of the undeformed theory.
Here ✓ = ✓1�✓2 is the di↵erence of the rapidities of the two particles involved – assumed
for simplicity to be identical – and M denotes their mass; in what follows we set the
units so that M = 1. A notable feature of the additional phases acquired under the
deformation is their abnormally fast high-energy growth, which is evident already in
the form (1.3)2. The scattering phase in (1.3) determines the density of two-particle
states, suppressing it when ↵ > 0 but greatly enhancing it at negative ↵. In the latter
case, one might be led to believe that the Hagedorn behavior is directly related to this
rapid growth of the 2 ! 2 scattering phase. One of the results of the present work is to
show that the situation is more subtle: the growth of the two-particle scattering phase
in (1.3) is not a necessary condition for the formation of the singularity of the finite-size
energy at finite real R. We will study certain generalizations of the TTbar deformation
which can be defined whenever the original QFT is integrable [1]. In most of such
deformations, the scattering phases present a less exotic high-energy behavior – i.e.,
they have finite limit at ✓ ! 1 – while, at the same time, the overall density of states
grows nonetheless exponentially with the energy, leading to the Hagedorn singularity.

The generalizations of the TTbar deformations we will be interested in are based on
the integrability of the original QFT. This assumes that the theory possesses infinitely

2A similar behavior of the scattering phase was previously found in non-commutative field theories
[9].
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with the idea of QFT as the RG flow stemming out of a UV fixed point. The theory
defined by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover,
at negative ↵, the singularity at finite R signals a very fast growth of the density of
states at high energies, a common hallmark of string theories, leading to the Hagedorn
transition [5]. The behavior of E↵(R) at positive ↵ is possibly even more puzzling,
as it suggests a finite number of states per unit volume, an unlikely feature if one
thinks of a QFT as a system of continuously many interacting degrees of freedom,
unless quantum gravity is involved1. Therefore, the deformed theory determined by
(1.1) cannot be considered a conventional UV complete local QFT. At the same time,
however, the TTbar deformation has a number of robust features which makes one
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reluctant to simply dismiss it as “pathological”. It is instead tempting to think that
the deformation (1.1) exemplifies some meaningful extension of the notion of local QFT.
In particular, an interesting interpretation of the theory A↵ in terms of its gravitational
dual was proposed in [8], where a relation to the state of the bulk gravity in the dual
theory was suggested. Several questions about 2D physics of the deformed theory need
to be elucidated in order to put such suggestions on a solid ground. For example, does
the deformation preserve any part of the local structure of QFT? Notice how the very
definition (1.1) depends of the notion of the energy-momentum tensor, conventionally a
part of such a local structure. Another important question concerns the macro-causality
in 2D space-time. While the deformation (1.1) with positive ↵ is suspected to display
super-luminal propagation [6, 8], the case of negative ↵ is most likely free from this
problem. We will not dwell on this question, as it is the negative-↵ deformation which
will be of interest to the present discussion. In any case, we believe it is important to
understand the physical origin of the above abnormal short-distance properties.

Another exact result about the theory A↵ concerns the deformation of its S-matrix,
whose elements di↵er from the corresponding undeformed ones by a universal phase
factor, available in closed form [6]. In particular, the 2 ! 2 elastic scattering amplitude
has the form

S↵(✓) = S0(✓) exp
�
�i↵M

2 sinh ✓
�
, (1.3)

where S0(✓) = S↵=0(✓) is the 2 ! 2 scattering amplitude of the undeformed theory.
Here ✓ = ✓1�✓2 is the di↵erence of the rapidities of the two particles involved – assumed
for simplicity to be identical – and M denotes their mass; in what follows we set the
units so that M = 1. A notable feature of the additional phases acquired under the
deformation is their abnormally fast high-energy growth, which is evident already in
the form (1.3)2. The scattering phase in (1.3) determines the density of two-particle
states, suppressing it when ↵ > 0 but greatly enhancing it at negative ↵. In the latter
case, one might be led to believe that the Hagedorn behavior is directly related to this
rapid growth of the 2 ! 2 scattering phase. One of the results of the present work is to
show that the situation is more subtle: the growth of the two-particle scattering phase
in (1.3) is not a necessary condition for the formation of the singularity of the finite-size
energy at finite real R. We will study certain generalizations of the TTbar deformation
which can be defined whenever the original QFT is integrable [1]. In most of such
deformations, the scattering phases present a less exotic high-energy behavior – i.e.,
they have finite limit at ✓ ! 1 – while, at the same time, the overall density of states
grows nonetheless exponentially with the energy, leading to the Hagedorn singularity.

The generalizations of the TTbar deformations we will be interested in are based on
the integrability of the original QFT. This assumes that the theory possesses infinitely

2A similar behavior of the scattering phase was previously found in non-commutative field theories
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equation can be written as follows

✏↵(✓|R) = (R� ↵E↵(R)) cosh ✓ �

Z
'0(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
, (2.4)

where we used the definition (2.2). For reasons that will become clear shortly we have
made explicit the fact that ✏(✓|R) and L(✓|R) are functions of R as well as of the
rapidity ✓. This last form (2.4) shows that ✏↵(✓|R) satisfies the same TBA equation as
✏0(✓|R), only with R replaced by R� ↵E↵(R). It then follows that

✏↵(✓|R) = ✏0(✓|R� ↵E↵(R)) (2.5)

which immediately implies the equation (1.2) for the deformed energy.
It is also worth reminding here how the singularity of E↵(R), signifying the Hage-

dorn density of states, follows from (1.2). This takes a particularly simple form in terms
of the function R↵(E), inverse to the function E↵(R), where ↵ is regarded as a fixed
parameter,

R↵(E) = R0(E) + ↵E . (2.6)

This expression shows that the graph of the deformed function E↵(R) di↵ers from the
graph of E0(R) just by an a�ne transformation (R,E) ! (R + ↵E,E) of the (R,E)
plane. If we assume, as we do, that the undeformed theory A0 is a conventional QFT,
defined à la Wilson as the RG flow from some UV fixed point down to an IR one (see
[4]), then the graph of E0(R) looks qualitatively as shown in Fig 1.

E

R

"0R

�
⇡c
6R

Figure 1: Finite-size ground state energy E0(R) of a conventional Wilsonian relativistic QFT.
Its R ! 0 behavior �⇡c/6R is controlled by the UV fixed point. At large R, E0(R) shows the
linear behavior ' "0R, with the slope "0 representing the bulk vacuum energy density. We have
to stress that the TBA equations actually compute the di↵erence Evac(R) � "0R, and in our
subsequent analysis E(R) stands for this di↵erence. (That is why in all plots below the R ! 1

slope of the primary branch is always set to zero.)
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spatial coordinate of the 2D space-time is compactified on a circle of circumference R,
its ground-state energy E↵(R) is determined exactly, via the equation [1, 2]

E↵(R) = E0(R� ↵E↵(R)) , (1.2)

in terms of the ground state energy E0(R) of the undeformed theory, at ↵ = 0. The
equation (1.2) shows that, depending on the sign of the deformation parameter ↵, the
ground state energy either develops a square root singularity at some R⇤ ⇠ 1/

p
|↵|, or

has no short-distance singularity at all. Neither of these types of behavior is compatible
with the idea of QFT as the RG flow stemming out of a UV fixed point. The theory
defined by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover,
at negative ↵, the singularity at finite R signals a very fast growth of the density of
states at high energies, a common hallmark of string theories, leading to the Hagedorn
transition [5]. The behavior of E↵(R) at positive ↵ is possibly even more puzzling,
as it suggests a finite number of states per unit volume, an unlikely feature if one
thinks of a QFT as a system of continuously many interacting degrees of freedom,
unless quantum gravity is involved1. Therefore, the deformed theory determined by
(1.1) cannot be considered a conventional UV complete local QFT. At the same time,
however, the TTbar deformation has a number of robust features which makes one

1A relation of the TTbar deformation to the Jackiw-Teitelboim gravity was indeed proposed in [6, 7].
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At large R the function E0(R) approaches a linear asymptotic "0R, where "0 is the
vacuum energy density of the infinite system, with the rate of the approach controlled by
the IR fixed point, which, typically, is a non-critical one. On the other hand, at R ! 0
it diverges as the Casimir energy determined by the UV fixed point, E0(R) ! �⇡c/6R,
where c is the Virasoro central charge of the UV fixed point CFT. Then, according
to (2.6), the plot of E↵(R) will look as either one of the panels a) or b) in Fig 2,
depending on the sign of ↵. In what follows we will concentrate our attention to the
case of negative ↵, shown in panel a). Note that the curve E↵(R) has two branches,
each of which having real values for R above a certain critical value R⇤. It is the upper
“primary” branch that corresponds to the ground state energy of the TTbar-deformed
theory (1.1).

E

R

"↵R

1
↵R

R⇤

(a) ↵ < 0

E

R

"↵R

1
↵R

(b) ↵ > 0

Figure 2: Finite-size ground state energy of the TTbar deformed theory. (a) ↵ < 0. The graph
E↵(R) shows the “turning point” at some finite R⇤, which signals the Hagedorn transition. (b)
↵ > 0. E↵(R) shows no singularity at R = 0.

The two branches merge at R = R⇤, where the function E↵(R) develops a square-
root branch point, i.e. the derivative dE↵(R)/dR diverges as (R�R⇤)�1/2. At R < R⇤,
the analytic continuation of E↵(R) returns complex values and the two branches are
complex conjugate.

It is the singularity at R⇤ that signals the Hagedorn phenomenon in the deformed
theory, which can be inferred as follows. When the Euclidean theory is considered in
the geometry of a very long cylinder of circumference R, as shown in Fig 3, its partition
function Z is saturated by the finite-size ground state

� logZ ' LE↵(R) , (2.7)

where L ! 1 is the length of the cylinder. This corresponds to the picture in which
the coordinate y along the cylinder is taken as the Euclidean time. Alternatively, if one
uses the picture where x plays the role of Matsubara time, the same partition function
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1 Introduction

The so-called TTbar deformations [1, 2] of two-dimensional quantum field theories
(QFTs) has brought about a renewed interest to UV properties of Renormalization
Group (RG) flows generated by higher dimensional (a.k.a. “irrelevant”) operators.
The TTbar deformation is defined as the one-parameter family of formal “actions” A↵,
determined by the flow

d

d↵
A↵ =

Z
(T T̄ )↵(x) d

2
x , (1.1)

where (T T̄ )↵(x) is a special composite operator built from the components of the
energy-momentum tensor associated with the theory A↵ [3]. The deformation (1.1)
has a number of notable properties. The theory A↵ is “solvable”, in the sense that
certain characteristics can be found exactly in terms of the corresponding ones in the
undeformed theory A↵=0. This is remarkable, because the deformation operator (T T̄ )↵
has exact dimension 4, meaning the perturbation in (1.1) is “irrelevant” in the RG
sense. Normally, such deformations are expected to break the short-distance structure
of the quantum field theory, generally rendering the theory UV incomplete, and possibly
violating causality at short scales. The abnormal UV properties of the theory A↵ are
manifest already in the short-scale behavior of its finite-size ground-state energy. If the
spatial coordinate of the 2D space-time is compactified on a circle of circumference R,
its ground-state energy E↵(R) is determined exactly, via the equation [1, 2]

E↵(R) = E0(R� ↵E↵(R)) , (1.2)

in terms of the ground state energy E0(R) of the undeformed theory, at ↵ = 0. The
equation (1.2) shows that, depending on the sign of the deformation parameter ↵, the
ground state energy either develops a square root singularity at some R⇤ ⇠ 1/

p
|↵|, or

has no short-distance singularity at all. Neither of these types of behavior is compatible
with the idea of QFT as the RG flow stemming out of a UV fixed point. The theory
defined by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover,
at negative ↵, the singularity at finite R signals a very fast growth of the density of
states at high energies, a common hallmark of string theories, leading to the Hagedorn
transition [5]. The behavior of E↵(R) at positive ↵ is possibly even more puzzling,
as it suggests a finite number of states per unit volume, an unlikely feature if one
thinks of a QFT as a system of continuously many interacting degrees of freedom,
unless quantum gravity is involved1. Therefore, the deformed theory determined by
(1.1) cannot be considered a conventional UV complete local QFT. At the same time,
however, the TTbar deformation has a number of robust features which makes one

1A relation of the TTbar deformation to the Jackiw-Teitelboim gravity was indeed proposed in [6, 7].
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1 Introduction

The so-called TTbar deformations [1, 2] of two-dimensional quantum field theories
(QFTs) has brought about a renewed interest to UV properties of Renormalization
Group (RG) flows generated by higher dimensional (a.k.a. “irrelevant”) operators.
The TTbar deformation is defined as the one-parameter family of formal “actions” A↵,
determined by the flow
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A↵ =
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x , (1.1)

where (T T̄ )↵(x) is a special composite operator built from the components of the
energy-momentum tensor associated with the theory A↵ [3]. The deformation (1.1)
has a number of notable properties. The theory A↵ is “solvable”, in the sense that
certain characteristics can be found exactly in terms of the corresponding ones in the
undeformed theory A↵=0. This is remarkable, because the deformation operator (T T̄ )↵
has exact dimension 4, meaning the perturbation in (1.1) is “irrelevant” in the RG
sense. Normally, such deformations are expected to break the short-distance structure
of the quantum field theory, generally rendering the theory UV incomplete, and possibly
violating causality at short scales. The abnormal UV properties of the theory A↵ are
manifest already in the short-scale behavior of its finite-size ground-state energy. If the
spatial coordinate of the 2D space-time is compactified on a circle of circumference R,
its ground-state energy E↵(R) is determined exactly, via the equation [1, 2]

E↵(R) = E0(R� ↵E↵(R)) , (1.2)

in terms of the ground state energy E0(R) of the undeformed theory, at ↵ = 0. The
equation (1.2) shows that, depending on the sign of the deformation parameter ↵, the
ground state energy either develops a square root singularity at some R⇤ ⇠ 1/

p
|↵|, or

has no short-distance singularity at all. Neither of these types of behavior is compatible
with the idea of QFT as the RG flow stemming out of a UV fixed point. The theory
defined by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover,
at negative ↵, the singularity at finite R signals a very fast growth of the density of
states at high energies, a common hallmark of string theories, leading to the Hagedorn
transition [5]. The behavior of E↵(R) at positive ↵ is possibly even more puzzling,
as it suggests a finite number of states per unit volume, an unlikely feature if one
thinks of a QFT as a system of continuously many interacting degrees of freedom,
unless quantum gravity is involved1. Therefore, the deformed theory determined by
(1.1) cannot be considered a conventional UV complete local QFT. At the same time,
however, the TTbar deformation has a number of robust features which makes one

1A relation of the TTbar deformation to the Jackiw-Teitelboim gravity was indeed proposed in [6, 7].
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many conserved local currents of higher Lorentz spins s+1, with s taking values in the
set {s} of odd natural numbers: s = 1, 3, 5, 7, ...3. The deforming operators T T̄

(s)(x)
are constructed from these currents in the exact same way as the operator T T̄ (x) is
built from the energy-momentum tensor, see [1] for details. It can be then shown
that the theory deformed by adding such operators retains its integrability, preserving
the same set of conserved local currents. Therefore the deformations of an Integrable
QFT (IQFT) by the operators T T̄

(s) generate an infinite-dimensional family of flows
generalizing (1.1),

@A{↵}
@↵s

=

Z
T T̄

(s)
{↵}(x) d

2
x . (1.4)

Here {↵} denotes the infinite set of the deformation parameters {↵} := {↵s}, and the
subscript {↵} under the operator T T̄ (s)(x) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory A{↵}. In what follows we refer
to (1.4) as the generalized TTbar flow4. For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to
the special case ↵s = 0 for s > 1, and ↵1 = ↵. To distinguish them, below we often
refer to (1.1) as the ”TTbar proper”, or simply TTbar, reserving the term ”Generalized
TTbar” to the generic deformation (1.4). It was argued that the deformation (1.4) leads
to the following deformation of the elastic two-particle S-matrix

S{↵}(✓) = S{0}(✓)�{↵}(✓) , �{↵}(✓) = exp

(
�i

X

s22Z+1

↵s sinh (s ✓)

)
, (1.5)

with the same notations as in (1.3) and (1.4)5. The phase factor �{↵}(✓) is known with
the name of CDD factor [13]. Generally, it is an energy-dependent phase factor �(✓)

3Generally, the set of spins {s} of local Integrals of motion may be di↵erent in di↵erent integrable
theories. Here we assume, again for simplicity, the most common situation – represented e.g. by sinh-
Gordon or sigma models – where {s} involves all odd natural numbers. In di↵erent models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

4In [10], a di↵erent family of generalizations of the TTbar flow, in which the deforming operators
T T̄s are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current,
was explored.

5The parameters ↵s in (1.3) coincide with the flow parameters defined in (1.4) provided a specific

normalization of the fields T T̄ (s)
{↵}(x) is chosen, otherwise the terms in the sum in (1.3) would have

additional normalization-dependent numerical coe�cients. The form (1.3) was explicitly derived in [1]
for the deformed sine-Gordon model, to leading order in the deformation parameters. However, this
form of the S-matrix deformation under the flow (1.4) can be proven in the general case, using the
methods of [11] or the approach developed in [12]. We will elaborate this point elsewhere.
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built from the energy-momentum tensor, see [1] for details. It can be then shown
that the theory deformed by adding such operators retains its integrability, preserving
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subscript {↵} under the operator T T̄ (s)(x) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory A{↵}. In what follows we refer
to (1.4) as the generalized TTbar flow4. For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to
the special case ↵s = 0 for s > 1, and ↵1 = ↵. To distinguish them, below we often
refer to (1.1) as the ”TTbar proper”, or simply TTbar, reserving the term ”Generalized
TTbar” to the generic deformation (1.4). It was argued that the deformation (1.4) leads
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with the same notations as in (1.3) and (1.4)5. The phase factor �{↵}(✓) is known with
the name of CDD factor [13]. Generally, it is an energy-dependent phase factor �(✓)

3Generally, the set of spins {s} of local Integrals of motion may be di↵erent in di↵erent integrable
theories. Here we assume, again for simplicity, the most common situation – represented e.g. by sinh-
Gordon or sigma models – where {s} involves all odd natural numbers. In di↵erent models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

4In [10], a di↵erent family of generalizations of the TTbar flow, in which the deforming operators
T T̄s are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current,
was explored.

5The parameters ↵s in (1.3) coincide with the flow parameters defined in (1.4) provided a specific

normalization of the fields T T̄ (s)
{↵}(x) is chosen, otherwise the terms in the sum in (1.3) would have

additional normalization-dependent numerical coe�cients. The form (1.3) was explicitly derived in [1]
for the deformed sine-Gordon model, to leading order in the deformation parameters. However, this
form of the S-matrix deformation under the flow (1.4) can be proven in the general case, using the
methods of [11] or the approach developed in [12]. We will elaborate this point elsewhere.
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many conserved local currents of higher Lorentz spins s+1, with s taking values in the
set {s} of odd natural numbers: s = 1, 3, 5, 7, ...3. The deforming operators T T̄

(s)(x)
are constructed from these currents in the exact same way as the operator T T̄ (x) is
built from the energy-momentum tensor, see [1] for details. It can be then shown
that the theory deformed by adding such operators retains its integrability, preserving
the same set of conserved local currents. Therefore the deformations of an Integrable
QFT (IQFT) by the operators T T̄

(s) generate an infinite-dimensional family of flows
generalizing (1.1),
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x . (1.4)

Here {↵} denotes the infinite set of the deformation parameters {↵} := {↵s}, and the
subscript {↵} under the operator T T̄ (s)(x) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory A{↵}. In what follows we refer
to (1.4) as the generalized TTbar flow4. For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to
the special case ↵s = 0 for s > 1, and ↵1 = ↵. To distinguish them, below we often
refer to (1.1) as the ”TTbar proper”, or simply TTbar, reserving the term ”Generalized
TTbar” to the generic deformation (1.4). It was argued that the deformation (1.4) leads
to the following deformation of the elastic two-particle S-matrix

S{↵}(✓) = S{0}(✓)�{↵}(✓) , �{↵}(✓) = exp

(
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↵s sinh (s ✓)

)
, (1.5)

with the same notations as in (1.3) and (1.4)5. The phase factor �{↵}(✓) is known with
the name of CDD factor [13]. Generally, it is an energy-dependent phase factor �(✓)

3Generally, the set of spins {s} of local Integrals of motion may be di↵erent in di↵erent integrable
theories. Here we assume, again for simplicity, the most common situation – represented e.g. by sinh-
Gordon or sigma models – where {s} involves all odd natural numbers. In di↵erent models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

4In [10], a di↵erent family of generalizations of the TTbar flow, in which the deforming operators
T T̄s are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current,
was explored.

5The parameters ↵s in (1.3) coincide with the flow parameters defined in (1.4) provided a specific

normalization of the fields T T̄ (s)
{↵}(x) is chosen, otherwise the terms in the sum in (1.3) would have
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for the deformed sine-Gordon model, to leading order in the deformation parameters. However, this
form of the S-matrix deformation under the flow (1.4) can be proven in the general case, using the
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Sine-Gordon:

of total derivatives, which bring zero contributions to to the integral in (2.5). The
Lagrangian approach formulation makes self evident the following deformation formula

δg⟨O1(z1) · · · On(zn) ⟩g = −
∑

i

δgi
∫

d2z⟨Oi(z)O1(z1) · · · On(zn) ⟩g

+
n
∑

k=1

⟨Oi1(z1) · · · δgOik(zk) · · · Oin(zn) ⟩g (2.7)

Here δgOa =
∑

i δg
i (B̂i(g)O)a, where Bi(g) are some linear operators in Fg. (The

integral over z can - and usually does - diverge as z → zk, and in UV complete theory
δOk(zk) must include cutoff dependent counterterms to make the finite limit ϵ → 0
possible.) In what follows we will not explicitly refer to any Lagrangian representation,
but simply postulate the above deformation formula. The latter then represents the
sense in which the space F̂g is the tangent one TΣ

∣

∣

g
.

3 IQFT and local IM

One of the common characteristics of Integrable Field Theories is the presence of an
infinite set of commutative local Integrals of Motion (IM). Local IM are generated by
local currents, i.e. pairs of local fields (Ts+1(z),Θs−1(z)), which satisfy the continuity
equations

∂z̄Ts+1(z) = ∂zΘs−1(z) (3.1)

The index s labels the currents; we will assume its values to represent their spins:
the subscripts s + 1 and s − 1 indicate the spins of the corresponding fields2. The
spins s for the currents takes values in some set {s} ⊂ Z which may be different for
different IQFT3. However, in all QFT there are conserved currents (3.1) with s = ±1,
the components of its energy-momentum tensor Tµν . Below we also use conventional
notations

T = −2π Tzz , T̄ = −2π Tz̄z̄ , Θ = 2π Tzz̄ (3.2)

for these components. If the theory is P-invariant (which we assume), the set {s} is
symmetric with respect to the P-reflection s ↔ −s. In what follows it will be convenient

2This identification is convenient, but not essential for our arguments below. When there are more
than one current of the same spin, additional labels may be introduced.

3Since we assume that the currents are local fields, only integer or half-integer spins s are allowed,
but the requirement of commutativity (3.6) rules out the possibility of having many fermionic elements.
Supersymmetry provides an interesting extension, but we do not discuss it here.
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to use separate notations for negative s, i.e. for s > 0 we write Θ−s−1 as T̄s+1, and
T−s+1 as Θ̄s−1, and remove all negative entries from {s}. The negative-s equations
(3.1) then read

∂zT̄s+1(z) = ∂z̄Θ̄s−1(z) . (3.3)

It follows from (3.1) and (3.3) that the integrals

Ps =
1

2π

∫

C

Ts+1(z) dz +Θs−1(z) dz̄ (3.4)

P̄s =
1

2π

∫

C

T̄s+1(z) dz̄ + Θ̄s−1(z) dz (3.5)

do not change under trivial deformations of the integration path C, and thus define
local IM.

The notion of integrability requires that the operators4 Ps form a commutative set,

[Ps, Ps′ ] = 0 (3.6)

for any s, s′ ∈ {s}. For local IM of the form (3.4), (3.5) this condition implies

[Pσ , Ts+1(z)] = ∂zAσ,s(z) , [Pσ,Θs−1(z)] = ∂z̄Aσ,s(z) , (3.7)

and

[Pσ, T̄s+1(z)] = ∂z̄Bσ,s(z) , [Pσ, Θ̄s−1(z)] = ∂zBσ,s(z) , (3.8)

where Aσ,s and Bσ,s are some local fields, as well as similar equations for the commu-
tators of P̄s with local currents. Let us remind here that the commutators [Ps,O(z)]
with any local field O can be defined, in the Euclidean language, by the integrals

[Ps, O(z0)] =
1

2π

∮

Cz0

[Ts+1(z)dz +Θs−1(z)dz̄]O(z0) (3.9)

In QFT with ”coventional” UV behavior (i.e. the one controlled by some UV
fixed point) the components (Ts+1,Θs−1) both have scale dimensions s + 1. Let us
note here that generally the dimensions are defined relative to to a given fixed point;
Generally, if QFT has a more complicated UV structure, the notion of dimensions may
be ambiguous.

4As usual, the space of states and operator representation may depend on the choice of the Hamil-
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many conserved local currents of higher Lorentz spins s+1, with s taking values in the
set {s} of odd natural numbers: s = 1, 3, 5, 7, ...3. The deforming operators T T̄

(s)(x)
are constructed from these currents in the exact same way as the operator T T̄ (x) is
built from the energy-momentum tensor, see [1] for details. It can be then shown
that the theory deformed by adding such operators retains its integrability, preserving
the same set of conserved local currents. Therefore the deformations of an Integrable
QFT (IQFT) by the operators T T̄

(s) generate an infinite-dimensional family of flows
generalizing (1.1),

@A{↵}
@↵s

=

Z
T T̄

(s)
{↵}(x) d

2
x . (1.4)

Here {↵} denotes the infinite set of the deformation parameters {↵} := {↵s}, and the
subscript {↵} under the operator T T̄ (s)(x) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory A{↵}. In what follows we refer
to (1.4) as the generalized TTbar flow4. For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to
the special case ↵s = 0 for s > 1, and ↵1 = ↵. To distinguish them, below we often
refer to (1.1) as the ”TTbar proper”, or simply TTbar, reserving the term ”Generalized
TTbar” to the generic deformation (1.4). It was argued that the deformation (1.4) leads
to the following deformation of the elastic two-particle S-matrix

S{↵}(✓) = S{0}(✓)�{↵}(✓) , �{↵}(✓) = exp

(
�i

X

s22Z+1

↵s sinh (s ✓)

)
, (1.5)

with the same notations as in (1.3) and (1.4)5. The phase factor �{↵}(✓) is known with
the name of CDD factor [13]. Generally, it is an energy-dependent phase factor �(✓)

3Generally, the set of spins {s} of local Integrals of motion may be di↵erent in di↵erent integrable
theories. Here we assume, again for simplicity, the most common situation – represented e.g. by sinh-
Gordon or sigma models – where {s} involves all odd natural numbers. In di↵erent models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

4In [10], a di↵erent family of generalizations of the TTbar flow, in which the deforming operators
T T̄s are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current,
was explored.

5The parameters ↵s in (1.3) coincide with the flow parameters defined in (1.4) provided a specific

normalization of the fields T T̄ (s)
{↵}(x) is chosen, otherwise the terms in the sum in (1.3) would have

additional normalization-dependent numerical coe�cients. The form (1.3) was explicitly derived in [1]
for the deformed sine-Gordon model, to leading order in the deformation parameters. However, this
form of the S-matrix deformation under the flow (1.4) can be proven in the general case, using the
methods of [11] or the approach developed in [12]. We will elaborate this point elsewhere.

4

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

many conserved local currents of higher Lorentz spins s+1, with s taking values in the
set {s} of odd natural numbers: s = 1, 3, 5, 7, ...3. The deforming operators T T̄

(s)(x)
are constructed from these currents in the exact same way as the operator T T̄ (x) is
built from the energy-momentum tensor, see [1] for details. It can be then shown
that the theory deformed by adding such operators retains its integrability, preserving
the same set of conserved local currents. Therefore the deformations of an Integrable
QFT (IQFT) by the operators T T̄

(s) generate an infinite-dimensional family of flows
generalizing (1.1),

@A{↵}
@↵s

=

Z
T T̄

(s)
{↵}(x) d

2
x . (1.4)

Here {↵} denotes the infinite set of the deformation parameters {↵} := {↵s}, and the
subscript {↵} under the operator T T̄ (s)(x) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory A{↵}. In what follows we refer
to (1.4) as the generalized TTbar flow4. For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to
the special case ↵s = 0 for s > 1, and ↵1 = ↵. To distinguish them, below we often
refer to (1.1) as the ”TTbar proper”, or simply TTbar, reserving the term ”Generalized
TTbar” to the generic deformation (1.4). It was argued that the deformation (1.4) leads
to the following deformation of the elastic two-particle S-matrix

S{↵}(✓) = S{0}(✓)�{↵}(✓) , �{↵}(✓) = exp

(
�i

X

s22Z+1

↵s sinh (s ✓)

)
, (1.5)

with the same notations as in (1.3) and (1.4)5. The phase factor �{↵}(✓) is known with
the name of CDD factor [13]. Generally, it is an energy-dependent phase factor �(✓)

3Generally, the set of spins {s} of local Integrals of motion may be di↵erent in di↵erent integrable
theories. Here we assume, again for simplicity, the most common situation – represented e.g. by sinh-
Gordon or sigma models – where {s} involves all odd natural numbers. In di↵erent models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

4In [10], a di↵erent family of generalizations of the TTbar flow, in which the deforming operators
T T̄s are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current,
was explored.

5The parameters ↵s in (1.3) coincide with the flow parameters defined in (1.4) provided a specific

normalization of the fields T T̄ (s)
{↵}(x) is chosen, otherwise the terms in the sum in (1.3) would have

additional normalization-dependent numerical coe�cients. The form (1.3) was explicitly derived in [1]
for the deformed sine-Gordon model, to leading order in the deformation parameters. However, this
form of the S-matrix deformation under the flow (1.4) can be proven in the general case, using the
methods of [11] or the approach developed in [12]. We will elaborate this point elsewhere.

4

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

many conserved local currents of higher Lorentz spins s+1, with s taking values in the
set {s} of odd natural numbers: s = 1, 3, 5, 7, ...3. The deforming operators T T̄
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which can be added to the 2 ! 2 scattering amplitude without violating the analyticity,
unitarity and crossing symmetry conditions. The unitarity and crossing demand that
�(✓) satisfies the functional relations

�(✓)�(�✓) = 1 , �(✓) = �(i⇡ � ✓) , (1.6)

which �{↵}(✓) in (1.5) obviously does term by term in the sum over s. Moreover, it
is easy to see that (once the overall sign ambiguity is ignored) any solution of (1.6)
can be represented by the form (1.5), with the series in the exponential converging in
some vicinity of the point ✓ = 0. However, the series does not need to converge at all
✓. The S-matrix analyticity forces �(✓) to be a meromorphic function of ✓, with the
locations of the poles constrained by the condition of macro-causality (more on this
momentarily). Therefore, for (1.5) to represent a physically sensible S-matrix, the sum
over s is allowed to have a finite domain of convergence, while its analytic continuation
must admit the representation

�{↵}(✓) = �pole(✓)�entire(✓) , (1.7)

where the first factor absorbs all the poles located at finite ✓, whose number N is in
general arbitrary (possibly infinite),

�pole(✓) =
NY

p=1

sinh ✓p + sinh ✓

sinh ✓p � sinh ✓
, (1.8)

and

�entire(✓) = exp

(
�i

X

s

as sinh (s ✓)

)
. (1.9)

In this last factor, the series in the exponential is assumed to converge at all ✓, so
that �entire(✓) represents an entire function of ✓. Macro-causality restricts possible
positions of the poles ✓p to either the imaginary axis Re ✓p = 0, or to the strips Im ✓p 2

[�⇡, 0] mod 2⇡ since, in virtue of (1.6), �(✓) is a periodic function, �(2⇡i+ ✓) = �(✓).
Let us stress here that the representation (1.7–1.9) of the generic CDD factor �{↵}(✓)
di↵ers from the one given in (1.5) only in the parameterization: any factor (1.7–1.9)
can be written in the form (1.5), with the parameters ↵s expressed in terms of as and
Bp, and conversely any factor �{↵}(✓) defined in (1.5), being analytically continued to
the whole ✓-plane, can be written in the form (1.7).

In the present work we focus our attention on the class of S-matrices (1.5) having
CDD factors (1.7) for which the entire part (1.9) is absent6,

�{↵}(✓) = �pole(✓) , (1.10)

6A first analysis of models whose S-matrix is deformed by a CDD factor consisting of only of a
generic entire part (1.9) has been performed in [14].
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which can be added to the 2 ! 2 scattering amplitude without violating the analyticity,
unitarity and crossing symmetry conditions. The unitarity and crossing demand that
�(✓) satisfies the functional relations

�(✓)�(�✓) = 1 , �(✓) = �(i⇡ � ✓) , (1.6)

which �{↵}(✓) in (1.5) obviously does term by term in the sum over s. Moreover, it
is easy to see that (once the overall sign ambiguity is ignored) any solution of (1.6)
can be represented by the form (1.5), with the series in the exponential converging in
some vicinity of the point ✓ = 0. However, the series does not need to converge at all
✓. The S-matrix analyticity forces �(✓) to be a meromorphic function of ✓, with the
locations of the poles constrained by the condition of macro-causality (more on this
momentarily). Therefore, for (1.5) to represent a physically sensible S-matrix, the sum
over s is allowed to have a finite domain of convergence, while its analytic continuation
must admit the representation

�{↵}(✓) = �pole(✓)�entire(✓) , (1.7)

where the first factor absorbs all the poles located at finite ✓, whose number N is in
general arbitrary (possibly infinite),

�pole(✓) =
NY

p=1

sinh ✓p + sinh ✓

sinh ✓p � sinh ✓
, (1.8)

and

�entire(✓) = exp

(
�i

X

s

as sinh (s ✓)

)
. (1.9)

In this last factor, the series in the exponential is assumed to converge at all ✓, so
that �entire(✓) represents an entire function of ✓. Macro-causality restricts possible
positions of the poles ✓p to either the imaginary axis Re ✓p = 0, or to the strips Im ✓p 2

[�⇡, 0] mod 2⇡ since, in virtue of (1.6), �(✓) is a periodic function, �(2⇡i+ ✓) = �(✓).
Let us stress here that the representation (1.7–1.9) of the generic CDD factor �{↵}(✓)
di↵ers from the one given in (1.5) only in the parameterization: any factor (1.7–1.9)
can be written in the form (1.5), with the parameters ↵s expressed in terms of as and
Bp, and conversely any factor �{↵}(✓) defined in (1.5), being analytically continued to
the whole ✓-plane, can be written in the form (1.7).

In the present work we focus our attention on the class of S-matrices (1.5) having
CDD factors (1.7) for which the entire part (1.9) is absent6,

�{↵}(✓) = �pole(✓) , (1.10)

6A first analysis of models whose S-matrix is deformed by a CDD factor consisting of only of a
generic entire part (1.9) has been performed in [14].
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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reluctant to simply dismiss it as “pathological”. It is instead tempting to think that
the deformation (1.1) exemplifies some meaningful extension of the notion of local QFT.
In particular, an interesting interpretation of the theory A↵ in terms of its gravitational
dual was proposed in [8], where a relation to the state of the bulk gravity in the dual
theory was suggested. Several questions about 2D physics of the deformed theory need
to be elucidated in order to put such suggestions on a solid ground. For example, does
the deformation preserve any part of the local structure of QFT? Notice how the very
definition (1.1) depends of the notion of the energy-momentum tensor, conventionally a
part of such a local structure. Another important question concerns the macro-causality
in 2D space-time. While the deformation (1.1) with positive ↵ is suspected to display
super-luminal propagation [6, 8], the case of negative ↵ is most likely free from this
problem. We will not dwell on this question, as it is the negative-↵ deformation which
will be of interest to the present discussion. In any case, we believe it is important to
understand the physical origin of the above abnormal short-distance properties.

Another exact result about the theory A↵ concerns the deformation of its S-matrix,
whose elements di↵er from the corresponding undeformed ones by a universal phase
factor, available in closed form [6]. In particular, the 2 ! 2 elastic scattering amplitude
has the form

S↵(✓) = S0(✓) exp
�
�i↵M

2 sinh ✓
�
, (1.3)

where S0(✓) = S↵=0(✓) is the 2 ! 2 scattering amplitude of the undeformed theory.
Here ✓ = ✓1�✓2 is the di↵erence of the rapidities of the two particles involved – assumed
for simplicity to be identical – and M denotes their mass; in what follows we set the
units so that M = 1. A notable feature of the additional phases acquired under the
deformation is their abnormally fast high-energy growth, which is evident already in
the form (1.3)2. The scattering phase in (1.3) determines the density of two-particle
states, suppressing it when ↵ > 0 but greatly enhancing it at negative ↵. In the latter
case, one might be led to believe that the Hagedorn behavior is directly related to this
rapid growth of the 2 ! 2 scattering phase. One of the results of the present work is to
show that the situation is more subtle: the growth of the two-particle scattering phase
in (1.3) is not a necessary condition for the formation of the singularity of the finite-size
energy at finite real R. We will study certain generalizations of the TTbar deformation
which can be defined whenever the original QFT is integrable [1]. In most of such
deformations, the scattering phases present a less exotic high-energy behavior – i.e.,
they have finite limit at ✓ ! 1 – while, at the same time, the overall density of states
grows nonetheless exponentially with the energy, leading to the Hagedorn singularity.

The generalizations of the TTbar deformations we will be interested in are based on
the integrability of the original QFT. This assumes that the theory possesses infinitely

2A similar behavior of the scattering phase was previously found in non-commutative field theories
[9].
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negative ↵, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = �1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

'↵(✓ � ✓
0) = '0(✓ � ✓

0)� ↵ cosh(✓ � ✓
0) . (2.1)

Recall that the ground state energy E↵(R) is given by (1.14), which in our case reads

E↵(R) = �

Z 1

�1
cosh ✓ L↵(✓|R)

d✓

2⇡
, (2.2)

where L↵(✓|R) := log
�
1 + e

�✏↵(✓|R)
�
satisfies the deformed TBA equation (1.12),

✏↵(✓|R) = R cosh ✓ �

Z
'↵(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on ✓ and ✓

0 in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with di↵erent or equal masses. We will elaborate on such cases elsewhere.
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negative ↵, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = �1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

'↵(✓ � ✓
0) = '0(✓ � ✓

0)� ↵ cosh(✓ � ✓
0) . (2.1)

Recall that the ground state energy E↵(R) is given by (1.14), which in our case reads

E↵(R) = �

Z 1

�1
cosh ✓ L↵(✓|R)

d✓

2⇡
, (2.2)

where L↵(✓|R) := log
�
1 + e

�✏↵(✓|R)
�
satisfies the deformed TBA equation (1.12),

✏↵(✓|R) = R cosh ✓ �

Z
'↵(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on ✓ and ✓

0 in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with di↵erent or equal masses. We will elaborate on such cases elsewhere.
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negative ↵, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = �1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

'↵(✓ � ✓
0) = '0(✓ � ✓

0)� ↵ cosh(✓ � ✓
0) . (2.1)

Recall that the ground state energy E↵(R) is given by (1.14), which in our case reads

E↵(R) = �

Z 1

�1
cosh ✓ L↵(✓|R)

d✓

2⇡
, (2.2)

where L↵(✓|R) := log
�
1 + e

�✏↵(✓|R)
�
satisfies the deformed TBA equation (1.12),

✏↵(✓|R) = R cosh ✓ �

Z
'↵(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on ✓ and ✓

0 in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with di↵erent or equal masses. We will elaborate on such cases elsewhere.
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negative ↵, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = �1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

'↵(✓ � ✓
0) = '0(✓ � ✓

0)� ↵ cosh(✓ � ✓
0) . (2.1)

Recall that the ground state energy E↵(R) is given by (1.14), which in our case reads

E↵(R) = �

Z 1

�1
cosh ✓ L↵(✓|R)

d✓

2⇡
, (2.2)

where L↵(✓|R) := log
�
1 + e

�✏↵(✓|R)
�
satisfies the deformed TBA equation (1.12),

✏↵(✓|R) = R cosh ✓ �

Z
'↵(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on ✓ and ✓

0 in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with di↵erent or equal masses. We will elaborate on such cases elsewhere.
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negative ↵, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = �1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

'↵(✓ � ✓
0) = '0(✓ � ✓

0)� ↵ cosh(✓ � ✓
0) . (2.1)

Recall that the ground state energy E↵(R) is given by (1.14), which in our case reads

E↵(R) = �

Z 1

�1
cosh ✓ L↵(✓|R)

d✓

2⇡
, (2.2)

where L↵(✓|R) := log
�
1 + e

�✏↵(✓|R)
�
satisfies the deformed TBA equation (1.12),

✏↵(✓|R) = R cosh ✓ �

Z
'↵(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on ✓ and ✓

0 in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with di↵erent or equal masses. We will elaborate on such cases elsewhere.
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negative ↵, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = �1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

'↵(✓ � ✓
0) = '0(✓ � ✓

0)� ↵ cosh(✓ � ✓
0) . (2.1)

Recall that the ground state energy E↵(R) is given by (1.14), which in our case reads

E↵(R) = �

Z 1

�1
cosh ✓ L↵(✓|R)

d✓

2⇡
, (2.2)

where L↵(✓|R) := log
�
1 + e

�✏↵(✓|R)
�
satisfies the deformed TBA equation (1.12),

✏↵(✓|R) = R cosh ✓ �

Z
'↵(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on ✓ and ✓

0 in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with di↵erent or equal masses. We will elaborate on such cases elsewhere.
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equation can be written as follows

✏↵(✓|R) = (R� ↵E↵(R)) cosh ✓ �

Z
'0(✓ � ✓

0)L↵(✓
0
|R)

d✓
0

2⇡
, (2.4)

where we used the definition (2.2). For reasons that will become clear shortly we have
made explicit the fact that ✏(✓|R) and L(✓|R) are functions of R as well as of the
rapidity ✓. This last form (2.4) shows that ✏↵(✓|R) satisfies the same TBA equation as
✏0(✓|R), only with R replaced by R� ↵E↵(R). It then follows that

✏↵(✓|R) = ✏0(✓|R� ↵E↵(R)) (2.5)

which immediately implies the equation (1.2) for the deformed energy.
It is also worth reminding here how the singularity of E↵(R), signifying the Hage-

dorn density of states, follows from (1.2). This takes a particularly simple form in terms
of the function R↵(E), inverse to the function E↵(R), where ↵ is regarded as a fixed
parameter,

R↵(E) = R0(E) + ↵E . (2.6)

This expression shows that the graph of the deformed function E↵(R) di↵ers from the
graph of E0(R) just by an a�ne transformation (R,E) ! (R + ↵E,E) of the (R,E)
plane. If we assume, as we do, that the undeformed theory A0 is a conventional QFT,
defined à la Wilson as the RG flow from some UV fixed point down to an IR one (see
[4]), then the graph of E0(R) looks qualitatively as shown in Fig 1.

E

R

"0R

�
⇡c
6R

Figure 1: Finite-size ground state energy E0(R) of a conventional Wilsonian relativistic QFT.
Its R ! 0 behavior �⇡c/6R is controlled by the UV fixed point. At large R, E0(R) shows the
linear behavior ' "0R, with the slope "0 representing the bulk vacuum energy density. We have
to stress that the TBA equations actually compute the di↵erence Evac(R) � "0R, and in our
subsequent analysis E(R) stands for this di↵erence. (That is why in all plots below the R ! 1

slope of the primary branch is always set to zero.)
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where we used the definition (2.2). For reasons that will become clear shortly we have
made explicit the fact that ✏(✓|R) and L(✓|R) are functions of R as well as of the
rapidity ✓. This last form (2.4) shows that ✏↵(✓|R) satisfies the same TBA equation as
✏0(✓|R), only with R replaced by R� ↵E↵(R). It then follows that

✏↵(✓|R) = ✏0(✓|R� ↵E↵(R)) (2.5)

which immediately implies the equation (1.2) for the deformed energy.
It is also worth reminding here how the singularity of E↵(R), signifying the Hage-

dorn density of states, follows from (1.2). This takes a particularly simple form in terms
of the function R↵(E), inverse to the function E↵(R), where ↵ is regarded as a fixed
parameter,

R↵(E) = R0(E) + ↵E . (2.6)

This expression shows that the graph of the deformed function E↵(R) di↵ers from the
graph of E0(R) just by an a�ne transformation (R,E) ! (R + ↵E,E) of the (R,E)
plane. If we assume, as we do, that the undeformed theory A0 is a conventional QFT,
defined à la Wilson as the RG flow from some UV fixed point down to an IR one (see
[4]), then the graph of E0(R) looks qualitatively as shown in Fig 1.
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Figure 1: Finite-size ground state energy E0(R) of a conventional Wilsonian relativistic QFT.
Its R ! 0 behavior �⇡c/6R is controlled by the UV fixed point. At large R, E0(R) shows the
linear behavior ' "0R, with the slope "0 representing the bulk vacuum energy density. We have
to stress that the TBA equations actually compute the di↵erence Evac(R) � "0R, and in our
subsequent analysis E(R) stands for this di↵erence. (That is why in all plots below the R ! 1

slope of the primary branch is always set to zero.)
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(✓) = �

NY

p=1

i sinup + sinh ✓

i sinup � sinh ✓
(3.1)

where, as before, � = � (resp. � = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(✓), we may limit our attention to the strip �⇡ < Re(up) < ⇡. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles ✓p = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles ✓p = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

�⇡  Re(up)  0 , 8p = 1, . . . , N . (3.2)

This leaves us with poles ✓p = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at ✓ = 2⇡i/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(✓) satisfies additional bootstrap
condition. This possibility, known as the “'3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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In what follows, we are going to concentrate our attention on two particular subfamilies:
the “1CDD models” where N = 1 and the “2CDD models” with N = 2.

The 1CDD models When N = 1 the S-matrix (3.1) consists of a single factor

S1CDD(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓
. (3.7)

According to the breakdown of cases (3.3), for each choice of the TBA statistics we
only have two possible models, corresponding to the following ranges of the parameter
u1:

(a) u1 2 R and �⇡ < u1 < 0,

(b) u1 = �⇡/2 + i✓0 and ✓0 2 R.

Considering at first the fermionic case � = �1, one recognizes in (3.7), for the case (a),
the well-known S-matrix of the sinh-Gordon model

SshG(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓
, �⇡ < u1 < 0 . (3.8)

On the other hand, the case (b) corresponds to the S-matrix of the “staircase model”,
introduced in [17]

Sstair(✓) =
sinh ✓ � i cosh ✓0
sinh ✓ + i cosh ✓0

, ✓0 2 R . (3.9)

In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for su�ciently large radius R > R⇤ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R⇤. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
energy E(R), possesses, as a function of R, two branches. These merge at R = R⇤,
meaning that R⇤ is a square-root branching point. We also show that this behavior
extends to the case (b) of complex parameter u1 = �⇡/2 + i✓0.
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In what follows, we are going to concentrate our attention on two particular subfamilies:
the “1CDD models” where N = 1 and the “2CDD models” with N = 2.

The 1CDD models When N = 1 the S-matrix (3.1) consists of a single factor

S1CDD(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓
. (3.7)

According to the breakdown of cases (3.3), for each choice of the TBA statistics we
only have two possible models, corresponding to the following ranges of the parameter
u1:

(a) u1 2 R and �⇡ < u1 < 0,

(b) u1 = �⇡/2 + i✓0 and ✓0 2 R.

Considering at first the fermionic case � = �1, one recognizes in (3.7), for the case (a),
the well-known S-matrix of the sinh-Gordon model

SshG(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓
, �⇡ < u1 < 0 . (3.8)

On the other hand, the case (b) corresponds to the S-matrix of the “staircase model”,
introduced in [17]

Sstair(✓) =
sinh ✓ � i cosh ✓0
sinh ✓ + i cosh ✓0

, ✓0 2 R . (3.9)

In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for su�ciently large radius R > R⇤ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R⇤. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
energy E(R), possesses, as a function of R, two branches. These merge at R = R⇤,
meaning that R⇤ is a square-root branching point. We also show that this behavior
extends to the case (b) of complex parameter u1 = �⇡/2 + i✓0.
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In what follows, we are going to concentrate our attention on two particular subfamilies:
the “1CDD models” where N = 1 and the “2CDD models” with N = 2.

The 1CDD models When N = 1 the S-matrix (3.1) consists of a single factor

S1CDD(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓
. (3.7)

According to the breakdown of cases (3.3), for each choice of the TBA statistics we
only have two possible models, corresponding to the following ranges of the parameter
u1:

(a) u1 2 R and �⇡ < u1 < 0,

(b) u1 = �⇡/2 + i✓0 and ✓0 2 R.

Considering at first the fermionic case � = �1, one recognizes in (3.7), for the case (a),
the well-known S-matrix of the sinh-Gordon model

SshG(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓
, �⇡ < u1 < 0 . (3.8)

On the other hand, the case (b) corresponds to the S-matrix of the “staircase model”,
introduced in [17]

Sstair(✓) =
sinh ✓ � i cosh ✓0
sinh ✓ + i cosh ✓0

, ✓0 2 R . (3.9)

In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for su�ciently large radius R > R⇤ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R⇤. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
energy E(R), possesses, as a function of R, two branches. These merge at R = R⇤,
meaning that R⇤ is a square-root branching point. We also show that this behavior
extends to the case (b) of complex parameter u1 = �⇡/2 + i✓0.
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In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for su�ciently large radius R > R⇤ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R⇤. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
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In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for su�ciently large radius R > R⇤ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R⇤. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
energy E(R), possesses, as a function of R, two branches. These merge at R = R⇤,
meaning that R⇤ is a square-root branching point. We also show that this behavior
extends to the case (b) of complex parameter u1 = �⇡/2 + i✓0.
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the well-known S-matrix of the sinh-Gordon model

SshG(✓) = �
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On the other hand, the case (b) corresponds to the S-matrix of the “staircase model”,
introduced in [17]

Sstair(✓) =
sinh ✓ � i cosh ✓0
sinh ✓ + i cosh ✓0

, ✓0 2 R . (3.9)

In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for su�ciently large radius R > R⇤ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R⇤. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
energy E(R), possesses, as a function of R, two branches. These merge at R = R⇤,
meaning that R⇤ is a square-root branching point. We also show that this behavior
extends to the case (b) of complex parameter u1 = �⇡/2 + i✓0.
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The 2CDD model In the N = 2 subfamily, a pair of CDD factors is present in (3.1):

S2CDD(✓) = �
i sinu1 + sinh ✓

i sinu1 � sinh ✓

i sinu2 + sinh ✓

i sinu2 � sinh ✓
. (3.10)

Following the breakdown (3.3), we see that there are 4 possibly distinct models, corre-
sponding to the following ranges of the parameters u1 and u2

(a) u1 2 R and �⇡ < u1 < 0,
u2 2 R and �⇡ < u2 < 0,

(b) ✓0 2 R and u1 = �⇡/2 + i✓0,
u2 2 R and �⇡ < u2 < 0,

(b’) u1 2 R and �⇡ < u1 < 0,
✓0 2 R and u2 = �⇡/2 + i✓0,

(c) ✓0 2 R and u1 = �⇡/2 + i✓0,
✓
0
0 2 R and u2 = �⇡/2 + i✓

0
0,

(d) ✓0 2 R, � 2 (�⇡/2,⇡/2), u1 = � � ⇡/2 + i✓0 and u2 = u
⇤
1.

The model (a) can be considered as a special instance of the more general case d). On
the other hand the models (c) and (b) – equivalent to (b’) – are genuinely distinct.
All the models above display, both for the bosonic and fermionic statistics, the same
type of behavior observed in the bosonic 1CDD models mentioned above: the itera-
tive procedure for solving the TBA equation (1.12) only converges for R larger than
some positive value R⇤ > 0 and the ground state energy E(R) apparently develops a
singularity at R = R⇤.

While we are going to present some data for all the various 2CDD cases, we devoted
most of our attention to the case (d), that we will call, with some definitional abuse,
the “2CDD model”. Its S-matrix and TBA kernels explicitly read as follows

S2CDD(✓) = �
sinh ✓ � i cosh(✓0 + i⇡�)

sinh ✓ + i cosh(✓0 + i⇡�)

sinh ✓ � i cosh(✓0 � i⇡�)

sinh ✓ + i cosh(✓0 � i⇡�)
. (3.11)

'2CDD(✓) =
X

⌘,⌘0=±

1

cosh(✓ + ⌘✓0 + i⌘0�)
. (3.12)
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation
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, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.

32

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.

32

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
p
2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (� = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x⇤ as a function of ✓0 can be found in that case, although it is straightforward to find it
numerically.

32

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit � !
⇡

2 of the kernel (3.12). In this limit the poles
of the kernel get closer to the real line, finally forming two Dirac � functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the di↵erence equation

Y (✓|R) = e
�R cosh ✓[1� �Y (✓ + ✓0|R)]��[1� �Y (✓ � ✓0|R)]��

, (5.16)

where we introduced the notation Y (✓|R) = e
�✏(✓|R). Note that this can be seen as an

infinite set of equations relating the values of Y on the grid points ✓ 2 (�✓0, ✓0) + ✓0Z.
Let us focus on the fermionic case (� = �1). Introducing yk = Y (✓ + k✓0) and

gk = e
�R cosh(✓+k✓0) we can write (5.16) as

yk = gk(1 + yk�1)(1 + yk+1) (k 2 Z) (5.17)

and look for a solution for di↵erent grids specified by a choice of ✓. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k|  m, since gk and yk decay very rapidly with R

and ✓0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g�1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., ✓ = 0), to get

y0 = �1� e
�R cosh ✓0 +

1

2
e
R(1+2 cosh ✓0)

✓
1±

q
1� 4e�R(1+cosh ✓0)(1 + e�R cosh ✓0)

◆
.

(5.19)

The solution develops a square root singularity at x⇤ ⇡ �✓0+log log(2(1+
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2)), which

is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of ✓ lattice. Let us also comment that a similar analysis of the truncated
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Figure 10: Approaching the Narrow Resonance (NR) limit for ✓0 = 2 and x = 1.75

Note that the truncation to m = 1 is only valid for su�ciently large R and ✓0.
Increasing the truncation order leads to more coupled equations, which in turn can be
recast as an (more complicated) algebraic equation for y0, with parameters depending
on ✓. The number of solutions increases accordingly. However, for any ✓ 2 (�✓0, ✓0)
there is always a single pair of solutions which collide and form a branching point at
some x⇤(✓) ⇡ �✓0 + const., corresponding to real, positive R⇤(✓), a feature that is not
altered by increasing the truncation order.

Finally, we remark that in the further special limit ✓0 = 0, the di↵erence equa-
tions (5.16) become simple algebraic equations for Y (✓) that can be exactly solved
both in the fermionic and the bosonic case, leading to exact expressions x⇤ = log log 2
and x⇤ = log log 3

2

p
3 for the critical points, respectively. These points are also shown

in Figure 8a, emphasizing the smooth nature of the limit � !
⇡

2 .
In Figure 10 we present as an example a solution with m = 8 truncation together

with the iterative solution of the integral equation (1.12) for ✓0 = 2 and � approaching
⇡/2, just before reaching the (first) critical R⇤(✓) of the NR limit. The transition seems
to be smooth, however we do not yet have a complete understanding of the nature of
this limit. We plan to revisit the narrow resonance model in a more sistematic way in
the future.

6 Discussion

There are two general questions which we believe our results shed some light upon.
One concerns the short-distance behavior of the theory under the generalized TTbar
deformation (1.4). Our results supports the expectation that, at least in the cases when
the CDD factor in the associated S-matrix deformation has the form (1.10), (1.8) with
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Figure 6: Pseudoenergy ✏(✓) for the secondary branch solution (blue) at large values of
R, showing the expected behavior (5.5), namely it is below 0 (marked with the dashed
line) in a finite interval. Corresponding behavior of the iterative solution (red). Here
the model parameters are ✓0 = 2 and � = 4⇡/10, though we checked the qualitative
picture to remain the same within the whole set of admissible values of ✓0 and �.

convenient to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with x⇤ = log(R⇤/2) for the corresponding
critical point). Here we find it more instructive to display L(✓) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R⇤ after which they become complex-valued.
For each R, the function L(✓) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R⇤ could in principle have a dependence on ✓. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ✏(✓) for at least ten di↵erent values
of x di↵ering from each other and from x⇤ by 10�8. Then, we selected several values of
✓ and for each value we performed a square root fit of the form a(✓)+b(✓)

p
�x⇤(✓) + x.

The fits were done using Mathematica’s NonlinearModelFit function by giving an ini-
tial estimate for x⇤(✓). By comparing all the obtained x⇤(✓), we verified that they agree
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The equations can be solved analytically for a very few cases  
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3.1 Iterative solution

The chances of a non-linear integral equation of the form (1.12) to be amenable to an
explicit analytic solution are considerably slim. For this reason the main investigation
approach to the TBA equations is of numerical nature13. In most situations, a simple
iterative procedure of the following type

✏n(✓) = R cosh ✓ + �

Z
'(✓ � ✓

0) log
h
1� �e

�✏n�1(✓0)
i
d✓

2⇡
, (3.13)

appropriately discretized, is shown to converge to the actual solution

lim
n!1

✏n(✓) = ✏(✓) , (3.14)

when the seed function ✏0(✓) is chosen as the driving term14

✏0(✓) = R cosh ✓ . (3.15)

The existence and uniqueness of the limit (3.14) has been proven rigorously in [30]
for the fermionic single-particle15 TBA equation (1.12) with a kernel satisfying the
requirement

||'||1 :=

Z
|'(✓)|

d✓

2⇡
 1 . (3.16)

The fermionic 1CDD models do satisfy this condition and, as such, the iteration proce-
dure is guaranteed to converge nicely in the whole range R 2 R>0, a fact which is easily
verified numerically. All the other models we considered above, on the other hand,
violate one or more of the hypotheses of the existence and uniqueness theorem in [30]
– being either of bosonic statistic, or having a kernel with L

1 measure ||'||1 = 2, or
both – and are not guaranteed to possess a convergent iterative solution. Notice that
the L

1 measure of the TBA kernel (3.6) counts the number of CDD factors

||'NCDD||1 = N , (3.17)

meaning that, in the class of models described by the S-matrix (3.1), only the subfamily
with (�, N) = (�1, 1) is guaranteed to have a convergent iterative solution.

13In some limiting cases, it is possible to derive exact expressions, e.g. for the ground-state energy
in the conformal limit, via the so-called “dilogarithm trick”, as explained nicely in [29].

14In the case in which the iterative procedure does converge, there is actually a vast freedom in the
choice of the seed function. However the standard choice indicated in the main text is the most natural
one.

15See also [31] for an extension to fermionic multi-particle TBA equations.
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||'NCDD||1 = N , (3.17)
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with (�, N) = (�1, 1) is guaranteed to have a convergent iterative solution.

13In some limiting cases, it is possible to derive exact expressions, e.g. for the ground-state energy
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14In the case in which the iterative procedure does converge, there is actually a vast freedom in the
choice of the seed function. However the standard choice indicated in the main text is the most natural
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15See also [31] for an extension to fermionic multi-particle TBA equations.
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(b) to (d)16, for both the bosonic and fermionic statistic, using the iterative procedure
(3.13). As already mentioned above we observed that only for the 1CDD fermionic
models this procedure converges for all positive values of the radius R. In every other
case, there exists a positive “critical radius” R⇤ > 0 such that for R  R⇤ the iterative
routine stops converging. As R approaches R⇤ from larger values, we noticed that
the rate of convergence of the iterative numerical routine slows down dramatically,
a telltale sign of the existence of some kind of singularity nearby17. In Figure 4 we
collected the plots of the ground-state energy E(R) for one representative point in the
parameter space for each of the models we mentioned above along with one for the T T̄ -
deformed free fermion. The shape of the curves suggests that all the cases, apart from
the fermionic 1CDD models, behave qualitatively in the same way as the T T̄ -deformed
free fermion, that is to say they develop a square-root type singularity at some critical
value of the radius R = R⇤ > 0:

E(R) ⇠
R!R

+
⇤

c0 + c1/2

p
R�R⇤ +O(R�R⇤) . (3.18)

In order to further confirm this suspicion we plotted the derivative of the ground-state
energy to the power �2 in the vicinity of the supposed critical point. As we can see
in the insets of Figure 4, the numerical results are in good accord with the hypothesis
that R⇤ is a singular point of square root type, as expressed by (3.18).

3.2 Two branches

Having our expectation confirmed leaves us with the question of how to deal numerically
with such a square root critical point. In particular, the behavior (3.18) implies the
existence of a secondary branch of the ground-state energy, behaving as

Ẽ(R) ⇠
R!R

+
⇤

c0 � c1/2

p
R�R⇤ +O(R�R⇤) , (3.19)

in the vicinity of the critical point. Here and below we are going to use the notation
Ẽ(R) for the secondary branch. We would like to be able to access numerically to
this secondary branch and to explore its properties, e.g. its large R behavior and the
possible existence of further critical points. The iterative routine (3.13) is ill suited for
this job and we need to employ a more refined method, the PALC mentioned in the
introduction and described in §4. Deferring a more thorough analysis of the properties
of E(R) to §5, let us present here its main qualitative features, concentrating on a single
point in the parameter space of the fermionic 2CDD model (d) as a representative case.

16Remember that the 2CDD model (a) is really a sub-case of model (d).
17This same “critical slowing down” of the numerical iterative procedure is observed as R ! 0 in

any TBA system with iterative solution converging in R 2 R>0. In this cases it reflects the existence
of a Casimir-like singularity of the ground-state energy at R = 0.
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3. Motivations

There are basically two motivations to study the scattering theory above. First, it can be
considered as a massive version of the Goldstone resonance scattering theory suggested in
[5] in connection with the massless integrable field theory interpolating between the tricritical
Ising fixed point and the critical Ising one. In that case the massless particles were the
Goldstone fermions respecting nonlinear realization of spontaneously broken supersymmetry
and the resonance pole was interpreted as a manifestation of unstable Higgs boson. Suppose
now some perturbation of this field theory, which explicitly breaks the SUSY and provides
the Goldstone particles with a small mass m, while preserving the integrability. Then the
scattering theory described above (with eθ0 ≪ 1) seems natural; the Higgs boson mass scale
is M2 = m2 eθ0 .

The second motivation becomes clear after one rewrites the scattering amplitude (1) in
the following form:

S(θ) = sinh θ −i cosh θ0

sinh θ + i cosh θ0
. (3)

This expression bears a strong resemblance to the scattering amplitude in the sinh-Gordon
model, i.e. the model of 2D scalar field ϕ(x) with the action

AshG =
∫ [

1
2

(∂aϕ)2 −2µ cosh βϕ

]
d2x, (4)

where β is the dimensionless coupling constant. The second term in action (4) can be viewed
as the perturbation of the CFT of free massless scalar field by the operator eβϕ + e−βϕ of
negative dimension

% = −β2/8π; (5)

the dimensional coupling µ is therefore µ ∼ [mass]1+β2/8π . Like the sine-Gordon model,
model (4) is massive and integrable [6]. The corresponding RFST is just the theory of single
neutral massive particle with the scattering amplitude [6, 7]

SshG(θ) = sinh θ −i sin γ

sinh θ + i sin γ
, (6)

where constant γ is related to the sinh-Gordon coupling β as follows [6, 7]:

γ = β2/8
1 + β2/8π

. (7)

Comparing equations (3) and (6) one observes that the scattering theory (3) can be viewed
as an analytic continuation of the sinh-Gordon RFST (6) to complex values of the coupling
constant γ :

γ = π

2
± iθ0. (8)

This observation will be used below for speculations.

4. The TBA equation

Since we are dealing with the diagonal RFST (1), the derivation of the corresponding
TBA system goes along the standard lines. We shall not discuss here the details of the TBA
technique, referring to papers [1– 3] for general definitions and derivations. In brief, TBA
describes the free energy of an integrable relativistic field system at finite temperature T or,
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Figure 5. (a) Effective central charge behaviour at θ0 = 0. Result of numerical solution of TBA
equation (10). (b) ceff(x) at θ0 = 10. (c) ceff(x) at θ0 = 20. (d) Staircase pattern of ceff(x) at
θ0 = 50.

6. Numerical calculations

TBA equation (10) was solved numerically by iterations of the function L(θ), which was
represented as a set of values at discrete rapidity points separated by "θ = 0.2. Some
numerical examples of L(θ) are presented in figure 4; they were already discussed in the
previous section. Few plots of the effective central charge ceff(x) are drawn in figure 5 for
θ0 = 0, 10, 20 and 50. While at θ0 we observe a smooth curve interpolating between ceff = 1
at x → −∞ and ceff = 0 at x > 2, the staircase pattern speculated above becomes more and
more prominent as θ0 increases. At θ0 = 50 (figure 5(d)) one can clearly recognize as much
as eight steps, the highest being of height 21/22 and corresponding to M11 central charge.
In fact, figure 5(d) implies even more distinct steps at x < −200. However, in this region
ceff(x) was not carried out numerically because of deterioration of the iterative procedure.

7. Roaming trajectories

Patterns of figures 5(b)– (d) give rise to a remarkable interpretation in terms of the
renormalization group (RG) flows. It was observed in [11] that in the RG space there is an
infinite sequence of fixed points, corresponding to the conformal minimal models Mp, p =
3, 4, . . . . These points are characterized by the central charge values cp = 1 − 6/(p(p + 1))

and at p → ∞ are condensed (in the RG sense) near the limiting fixed point M∞ with
c = 1. Every two successive fixed points Mp and Mp−1 are connected by the RG trajectory
Mp → Mp−1. This trajectory corresponds to massless interpolating field theory, which has
the Mp CFT asymptotic in the UV limit, while the massless infrared region is controlled by
the CFT model Mp−1. The whole trajectory is drawn from the UV fixed point by the relevant
Mp operator #13. In the infrared limit the trajectory is attracted to Mp−1 by the irrelevant
scalar field #31 of the infrared minimal CFT. This pattern, which is drawn conventionally in
figure 6, was demonstrated in [11, 12] by the perturbative RG analysis, reliable at p large. It
is commonly believed that the qualitative picture holds for all p > 3 (at M3 the attracting
operator #31 is substituted by the descendant CFT field T̄ T [13, 5]) until finally at M3 the
operator #13 generates a trajectory with massive infrared behaviour (figure 6).

12854 Al B Zamolodchikov

(a) (b)

(c) (d)

Figure 5. (a) Effective central charge behaviour at θ0 = 0. Result of numerical solution of TBA
equation (10). (b) ceff(x) at θ0 = 10. (c) ceff(x) at θ0 = 20. (d) Staircase pattern of ceff(x) at
θ0 = 50.

6. Numerical calculations

TBA equation (10) was solved numerically by iterations of the function L(θ), which was
represented as a set of values at discrete rapidity points separated by "θ = 0.2. Some
numerical examples of L(θ) are presented in figure 4; they were already discussed in the
previous section. Few plots of the effective central charge ceff(x) are drawn in figure 5 for
θ0 = 0, 10, 20 and 50. While at θ0 we observe a smooth curve interpolating between ceff = 1
at x → −∞ and ceff = 0 at x > 2, the staircase pattern speculated above becomes more and
more prominent as θ0 increases. At θ0 = 50 (figure 5(d)) one can clearly recognize as much
as eight steps, the highest being of height 21/22 and corresponding to M11 central charge.
In fact, figure 5(d) implies even more distinct steps at x < −200. However, in this region
ceff(x) was not carried out numerically because of deterioration of the iterative procedure.

7. Roaming trajectories

Patterns of figures 5(b)– (d) give rise to a remarkable interpretation in terms of the
renormalization group (RG) flows. It was observed in [11] that in the RG space there is an
infinite sequence of fixed points, corresponding to the conformal minimal models Mp, p =
3, 4, . . . . These points are characterized by the central charge values cp = 1 − 6/(p(p + 1))

and at p → ∞ are condensed (in the RG sense) near the limiting fixed point M∞ with
c = 1. Every two successive fixed points Mp and Mp−1 are connected by the RG trajectory
Mp → Mp−1. This trajectory corresponds to massless interpolating field theory, which has
the Mp CFT asymptotic in the UV limit, while the massless infrared region is controlled by
the CFT model Mp−1. The whole trajectory is drawn from the UV fixed point by the relevant
Mp operator #13. In the infrared limit the trajectory is attracted to Mp−1 by the irrelevant
scalar field #31 of the infrared minimal CFT. This pattern, which is drawn conventionally in
figure 6, was demonstrated in [11, 12] by the perturbative RG analysis, reliable at p large. It
is commonly believed that the qualitative picture holds for all p > 3 (at M3 the attracting
operator #31 is substituted by the descendant CFT field T̄ T [13, 5]) until finally at M3 the
operator #13 generates a trajectory with massive infrared behaviour (figure 6).

12854 Al B Zamolodchikov

(a) (b)

(c) (d)

Figure 5. (a) Effective central charge behaviour at θ0 = 0. Result of numerical solution of TBA
equation (10). (b) ceff(x) at θ0 = 10. (c) ceff(x) at θ0 = 20. (d) Staircase pattern of ceff(x) at
θ0 = 50.

6. Numerical calculations

TBA equation (10) was solved numerically by iterations of the function L(θ), which was
represented as a set of values at discrete rapidity points separated by "θ = 0.2. Some
numerical examples of L(θ) are presented in figure 4; they were already discussed in the
previous section. Few plots of the effective central charge ceff(x) are drawn in figure 5 for
θ0 = 0, 10, 20 and 50. While at θ0 we observe a smooth curve interpolating between ceff = 1
at x → −∞ and ceff = 0 at x > 2, the staircase pattern speculated above becomes more and
more prominent as θ0 increases. At θ0 = 50 (figure 5(d)) one can clearly recognize as much
as eight steps, the highest being of height 21/22 and corresponding to M11 central charge.
In fact, figure 5(d) implies even more distinct steps at x < −200. However, in this region
ceff(x) was not carried out numerically because of deterioration of the iterative procedure.

7. Roaming trajectories

Patterns of figures 5(b)– (d) give rise to a remarkable interpretation in terms of the
renormalization group (RG) flows. It was observed in [11] that in the RG space there is an
infinite sequence of fixed points, corresponding to the conformal minimal models Mp, p =
3, 4, . . . . These points are characterized by the central charge values cp = 1 − 6/(p(p + 1))

and at p → ∞ are condensed (in the RG sense) near the limiting fixed point M∞ with
c = 1. Every two successive fixed points Mp and Mp−1 are connected by the RG trajectory
Mp → Mp−1. This trajectory corresponds to massless interpolating field theory, which has
the Mp CFT asymptotic in the UV limit, while the massless infrared region is controlled by
the CFT model Mp−1. The whole trajectory is drawn from the UV fixed point by the relevant
Mp operator #13. In the infrared limit the trajectory is attracted to Mp−1 by the irrelevant
scalar field #31 of the infrared minimal CFT. This pattern, which is drawn conventionally in
figure 6, was demonstrated in [11, 12] by the perturbative RG analysis, reliable at p large. It
is commonly believed that the qualitative picture holds for all p > 3 (at M3 the attracting
operator #31 is substituted by the descendant CFT field T̄ T [13, 5]) until finally at M3 the
operator #13 generates a trajectory with massive infrared behaviour (figure 6).

VOLUME 69, NUMBER I 7 PH YSICAL REVI EW LETTERS 26 OCTOBER 1992

f+ OO

e(0)+ dH'y(0 —0', Ho)L(c) =mR cosh(0), (4)2z "
where y(0, 0o) =—f(d/dH)1n[S~ ~(0, 0o)S~ ~(irr 0—, 0o)].
The ultraviolet limit of the Casimir energy, R 0, is

independent of Ho and we find the behavior E(R,Ho)= —2x/6R, which implies that the background confor-
mal theory has central charge c =2 [9]. In order to ana-
lyze the behavior of the function c (R, Ho) = —6R
&& E(R,Ho)/rr for finite values of R we numerically solved
Eq. (2), in the convenient variable %=In(mR/2), by
standard interactive procedure. For Ho =0, c(R,O)
behaves as a smooth function between the ultraviolet
(c=2) and the infrared (c=0) regimes. By increasing
00, however, we observe that certain plateaus start to
form precisely around the values that parametrize the
central charge of the minimal model of the W(A2) alge-
bra, namely, c =2[1—12/p(p+ I )], p =4, 5, . . . . For ex-
ample at 00=40, we notice at least 8 plateaus starting at
p =12 and subsequently visiting the other fixed points
p=l 1, . . . , 4, until finally reaching the infrared region.
In Figs. 1(a) and 1(b) we show this behavior for
00=20,40. The same pattern can be viewed from the
beta function along the RG trajectories. Following
Zamolodchikov's notation [I], one can define the beta
function as

P(g) = —„c(R,H, ), g=2 c(R,H, ).—d

In Figs. 2(a) and 2(b), we show P(g) for Ho=20, 40. The
zeros of Ig(g) are formed precisely at g=24/p(p+I),
p =4, 5, . . . , in accordance with the plateaus mentioned
above.

In the case of general A we should expect a similar be-
havior. From Zamolodchikov's discussion of N =2 and
our present results we conclude that each time thatI=—(p —N)Ho/2 the function c(R,Ho) will cross over
its value of cz =(N —I) [I —N(N+ I)/p(p+ I)], p =N
+1,N+2, . . . , to the next fixed point with central
charge cz+], Indeed, by linearizing the TBA equations
around X=—(p N)0—o/2 one remains with the same
equation that describes the flow in the 8'(Ajv-~ ) minimal
models perturbed by the least Z(N)-invariant operator
[10]. However, we stress that the bulk of each plateau
has the approximate length of Ho/N, in agreement with
the fact that the finite-size corrections are N dependent.
As an important remark we mention that our proposed

resonance Z(N)-factorized model is easily connected to
the one of the Ajv —~ Toda field theory [4], by making an
analytical continuation to the complex values of the Toda
coupling constant. The coupling constant e enters in the
S matrices through a function bT~, (a) [4]. By setting
bT~ ,(a) =r.r/N+ iHn in Eq. (2), we recover the minimal
S matrix of the A~ ~ Toda model [41. This leads us to
conjecture that the resonance scattering theories, based
on the simple laced Lie algebras A, D,E can be obtained
from the corresponding Toda S matrices [11]. The reso-
nance parameter Ho is introduced through the simple rela-
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FIG. 1. The scaling function c(R,Op) for (a) Op=20 and (b)
Op =40.
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FIG. 2. The beta function P(g) for (a) Ho =20 and (b)
op=40. For Op=40 we have omitted the first zero at p =5 in
order to better show the remaining zeros of P(g).
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mal theory has central charge c =2 [9]. In order to ana-
lyze the behavior of the function c (R, Ho) = —6R
&& E(R,Ho)/rr for finite values of R we numerically solved
Eq. (2), in the convenient variable %=In(mR/2), by
standard interactive procedure. For Ho =0, c(R,O)
behaves as a smooth function between the ultraviolet
(c=2) and the infrared (c=0) regimes. By increasing
00, however, we observe that certain plateaus start to
form precisely around the values that parametrize the
central charge of the minimal model of the W(A2) alge-
bra, namely, c =2[1—12/p(p+ I )], p =4, 5, . . . . For ex-
ample at 00=40, we notice at least 8 plateaus starting at
p =12 and subsequently visiting the other fixed points
p=l 1, . . . , 4, until finally reaching the infrared region.
In Figs. 1(a) and 1(b) we show this behavior for
00=20,40. The same pattern can be viewed from the
beta function along the RG trajectories. Following
Zamolodchikov's notation [I], one can define the beta
function as

P(g) = —„c(R,H, ), g=2 c(R,H, ).—d

In Figs. 2(a) and 2(b), we show P(g) for Ho=20, 40. The
zeros of Ig(g) are formed precisely at g=24/p(p+I),
p =4, 5, . . . , in accordance with the plateaus mentioned
above.

In the case of general A we should expect a similar be-
havior. From Zamolodchikov's discussion of N =2 and
our present results we conclude that each time thatI=—(p —N)Ho/2 the function c(R,Ho) will cross over
its value of cz =(N —I) [I —N(N+ I)/p(p+ I)], p =N
+1,N+2, . . . , to the next fixed point with central
charge cz+], Indeed, by linearizing the TBA equations
around X=—(p N)0—o/2 one remains with the same
equation that describes the flow in the 8'(Ajv-~ ) minimal
models perturbed by the least Z(N)-invariant operator
[10]. However, we stress that the bulk of each plateau
has the approximate length of Ho/N, in agreement with
the fact that the finite-size corrections are N dependent.
As an important remark we mention that our proposed

resonance Z(N)-factorized model is easily connected to
the one of the Ajv —~ Toda field theory [4], by making an
analytical continuation to the complex values of the Toda
coupling constant. The coupling constant e enters in the
S matrices through a function bT~, (a) [4]. By setting
bT~ ,(a) =r.r/N+ iHn in Eq. (2), we recover the minimal
S matrix of the A~ ~ Toda model [41. This leads us to
conjecture that the resonance scattering theories, based
on the simple laced Lie algebras A, D,E can be obtained
from the corresponding Toda S matrices [11]. The reso-
nance parameter Ho is introduced through the simple rela-
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FIG. 1. The scaling function c(R,Op) for (a) Op=20 and (b)
Op =40.

g

FIG. 2. The beta function P(g) for (a) Ho =20 and (b)
op=40. For Op=40 we have omitted the first zero at p =5 in
order to better show the remaining zeros of P(g).

2462

3 CDD’s 
u1 = �4⇡

3

<latexit sha1_base64="xOAywGLZBcy7H9oxJaRAypXNxfA=">AAAC3HicjVHLSsNAFD3Gd31VXbhwM1gEN5ZEC7oRRDcuFWwt2FqS6VQH0yRMJoKU7tyJW3/ArX6P+Af6F94ZU/CB6IQkZ86958y9c4MklKl23ZchZ3hkdGx8YrIwNT0zO1ecX6ilcaa4qPI4jFU98FMRykhUtdShqCdK+N0gFCfB5b6Jn1wJlco4OtbXiWh2/fNIdiT3NVGt4lLW8tgOW2eNjvJ5r8Iaiez3NvutYsktu3axn8DLQQn5OoyLz2igjRgcGboQiKAJh/CR0nMKDy4S4proEacISRsX6KNA2oyyBGX4xF7S95x2pzkb0d54plbN6ZSQXkVKhlXSxJSnCJvTmI1n1tmwv3n3rKep7Zr+Qe7VJVbjgti/dIPM/+pMLxodbNseJPWUWMZ0x3OXzN6KqZx96kqTQ0KcwW2KK8LcKgf3zKwmtb2bu/Vt/NVmGtbseZ6b4c1USQP2vo/zJ6htlL1KuXJUKe3u5aOewDJWsEbz3MIuDnCIqq3/AY94cs6cG+fWuftIdYZyzSK+LOf+HSCJl4w=</latexit>

u2 =
1

3
(�2⇡ + 3ia)

<latexit sha1_base64="S0gXhnEVZf6g4FeNIsTW0tH9wSQ="></latexit>

u3 =
1

3
(�2⇡ � 3ia)

<latexit sha1_base64="g6014AbK5nqBklNBaC87b71b/Vw="></latexit>

(M. Martins)(Al. Zamolodchikov)



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

(b) to (d)16, for both the bosonic and fermionic statistic, using the iterative procedure
(3.13). As already mentioned above we observed that only for the 1CDD fermionic
models this procedure converges for all positive values of the radius R. In every other
case, there exists a positive “critical radius” R⇤ > 0 such that for R  R⇤ the iterative
routine stops converging. As R approaches R⇤ from larger values, we noticed that
the rate of convergence of the iterative numerical routine slows down dramatically,
a telltale sign of the existence of some kind of singularity nearby17. In Figure 4 we
collected the plots of the ground-state energy E(R) for one representative point in the
parameter space for each of the models we mentioned above along with one for the T T̄ -
deformed free fermion. The shape of the curves suggests that all the cases, apart from
the fermionic 1CDD models, behave qualitatively in the same way as the T T̄ -deformed
free fermion, that is to say they develop a square-root type singularity at some critical
value of the radius R = R⇤ > 0:

E(R) ⇠
R!R

+
⇤

c0 + c1/2

p
R�R⇤ +O(R�R⇤) . (3.18)

In order to further confirm this suspicion we plotted the derivative of the ground-state
energy to the power �2 in the vicinity of the supposed critical point. As we can see
in the insets of Figure 4, the numerical results are in good accord with the hypothesis
that R⇤ is a singular point of square root type, as expressed by (3.18).

3.2 Two branches

Having our expectation confirmed leaves us with the question of how to deal numerically
with such a square root critical point. In particular, the behavior (3.18) implies the
existence of a secondary branch of the ground-state energy, behaving as

Ẽ(R) ⇠
R!R

+
⇤

c0 � c1/2

p
R�R⇤ +O(R�R⇤) , (3.19)

in the vicinity of the critical point. Here and below we are going to use the notation
Ẽ(R) for the secondary branch. We would like to be able to access numerically to
this secondary branch and to explore its properties, e.g. its large R behavior and the
possible existence of further critical points. The iterative routine (3.13) is ill suited for
this job and we need to employ a more refined method, the PALC mentioned in the
introduction and described in §4. Deferring a more thorough analysis of the properties
of E(R) to §5, let us present here its main qualitative features, concentrating on a single
point in the parameter space of the fermionic 2CDD model (d) as a representative case.

16Remember that the 2CDD model (a) is really a sub-case of model (d).
17This same “critical slowing down” of the numerical iterative procedure is observed as R ! 0 in

any TBA system with iterative solution converging in R 2 R>0. In this cases it reflects the existence
of a Casimir-like singularity of the ground-state energy at R = 0.
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(b) to (d)16, for both the bosonic and fermionic statistic, using the iterative procedure
(3.13). As already mentioned above we observed that only for the 1CDD fermionic
models this procedure converges for all positive values of the radius R. In every other
case, there exists a positive “critical radius” R⇤ > 0 such that for R  R⇤ the iterative
routine stops converging. As R approaches R⇤ from larger values, we noticed that
the rate of convergence of the iterative numerical routine slows down dramatically,
a telltale sign of the existence of some kind of singularity nearby17. In Figure 4 we
collected the plots of the ground-state energy E(R) for one representative point in the
parameter space for each of the models we mentioned above along with one for the T T̄ -
deformed free fermion. The shape of the curves suggests that all the cases, apart from
the fermionic 1CDD models, behave qualitatively in the same way as the T T̄ -deformed
free fermion, that is to say they develop a square-root type singularity at some critical
value of the radius R = R⇤ > 0:

E(R) ⇠
R!R

+
⇤

c0 + c1/2

p
R�R⇤ +O(R�R⇤) . (3.18)

In order to further confirm this suspicion we plotted the derivative of the ground-state
energy to the power �2 in the vicinity of the supposed critical point. As we can see
in the insets of Figure 4, the numerical results are in good accord with the hypothesis
that R⇤ is a singular point of square root type, as expressed by (3.18).

3.2 Two branches

Having our expectation confirmed leaves us with the question of how to deal numerically
with such a square root critical point. In particular, the behavior (3.18) implies the
existence of a secondary branch of the ground-state energy, behaving as

Ẽ(R) ⇠
R!R

+
⇤

c0 � c1/2

p
R�R⇤ +O(R�R⇤) , (3.19)

in the vicinity of the critical point. Here and below we are going to use the notation
Ẽ(R) for the secondary branch. We would like to be able to access numerically to
this secondary branch and to explore its properties, e.g. its large R behavior and the
possible existence of further critical points. The iterative routine (3.13) is ill suited for
this job and we need to employ a more refined method, the PALC mentioned in the
introduction and described in §4. Deferring a more thorough analysis of the properties
of E(R) to §5, let us present here its main qualitative features, concentrating on a single
point in the parameter space of the fermionic 2CDD model (d) as a representative case.

16Remember that the 2CDD model (a) is really a sub-case of model (d).
17This same “critical slowing down” of the numerical iterative procedure is observed as R ! 0 in

any TBA system with iterative solution converging in R 2 R>0. In this cases it reflects the existence
of a Casimir-like singularity of the ground-state energy at R = 0.
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Figure 4: Ground-state energies for the various models discussed above, along with
that of the T T̄ -deformed free fermion (black dots). The empty (resp. filled) markers
correspond to models with bosonic (resp. fermionic) statistics. The fermionic sinh-
Gordon and staircase models can be solved iteratively all the way to the R ! 0 limit,
while the rest fail to converge below a certain model-specific scale R⇤. The parameters
of the models were chosen as to allow a comfortable visual comparison between the
curves and are the same for both bosonic and fermionic versions of the same model.
Insets: inverse square of the (numerical) derivative. As shown by the fits (dotted lines),
the fermionic sinh-Gordon and staircase models show the conventional UV behavior
/ R

4, while the other models develop a / R behavior reminiscent of the square-root
branching singularity of the ground state energy.

We investigated numerically the 1CDD models (a) and (b) and the 2CDD models
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while the constant term is vanishing up to the precision we used for our numerical
routines. We will see in §5 that this is the asymptotic behavior predicted by analytical
considerations. In the zoomed box in Figure 5 we also plotted a fit of the function
E(R) in the vicinity of the critical point R⇤. As expected the behavior in this region is
best described by the square-root function (3.18) (and (3.19) for the secondary branch),
with the coe�cients taking the following values

c0

✓
✓0 =

1

2
, � =

3⇡

20

◆
= �1.11767 . . . ,

c1/2

✓
✓0 =

1

2
, � =

3⇡

20

◆
= 2.03547 . . . , (3.23)

R⇤

✓
✓0 =

1

2
, � =

3⇡

20

◆
= 0.61478849 . . . .

Another notable fact is that we see no trace of additional singular points: the PALC
method can, apparently, reach arbitrarily large values of R on the secondary branch and
the resulting ground-state energy quickly approaches the expected asymptotic linear
behavior.

We note again that the behavior of E(R) depicted in Figure 5 is qualitatively
identical to the one exhibited by the ground-state energy of T T̄ -deformed models for
negative values of the deformation parameter ↵, as described in §2 (see e.g. Figure 2).

Finally, we stress that the features of E(R) described here for a point in the param-
eter space of a specific model really are representative of the general behavior of the
ground-state energy in the family of models defined by the S-matrices (3.1), at least
for what concerns the case of fermionic statistics. As we will discuss in §5 the status
of the models with bosonic statistics is still not completely settled. In particular it is
still unclear whether the secondary branch of E(R) displays additional critical points
or continues undisturbed in the deep IR and, if this was the case, what type of behavior
it follows.

4 Numerical Method

The results displayed in the previous section suggest that the solution to the TBA
equation (1.12), for S-matrices of the form (3.1), may generically possesses a singular
dependence on the parameter R. In particular the slope of the tangent to the graph of
E(R) apparently diverges at some R = R⇤. Such critical points are known as turning
points. Their presence in the dependence of the ground-state energy E on the system
size R evokes the case of the TTbar deformed models, in which all the quantities
obtainable from the TBA display a square-root singularity at the same value R = R⇤.
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while the constant term is vanishing up to the precision we used for our numerical
routines. We will see in §5 that this is the asymptotic behavior predicted by analytical
considerations. In the zoomed box in Figure 5 we also plotted a fit of the function
E(R) in the vicinity of the critical point R⇤. As expected the behavior in this region is
best described by the square-root function (3.18) (and (3.19) for the secondary branch),
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Another notable fact is that we see no trace of additional singular points: the PALC
method can, apparently, reach arbitrarily large values of R on the secondary branch and
the resulting ground-state energy quickly approaches the expected asymptotic linear
behavior.

We note again that the behavior of E(R) depicted in Figure 5 is qualitatively
identical to the one exhibited by the ground-state energy of T T̄ -deformed models for
negative values of the deformation parameter ↵, as described in §2 (see e.g. Figure 2).

Finally, we stress that the features of E(R) described here for a point in the param-
eter space of a specific model really are representative of the general behavior of the
ground-state energy in the family of models defined by the S-matrices (3.1), at least
for what concerns the case of fermionic statistics. As we will discuss in §5 the status
of the models with bosonic statistics is still not completely settled. In particular it is
still unclear whether the secondary branch of E(R) displays additional critical points
or continues undisturbed in the deep IR and, if this was the case, what type of behavior
it follows.

4 Numerical Method

The results displayed in the previous section suggest that the solution to the TBA
equation (1.12), for S-matrices of the form (3.1), may generically possesses a singular
dependence on the parameter R. In particular the slope of the tangent to the graph of
E(R) apparently diverges at some R = R⇤. Such critical points are known as turning
points. Their presence in the dependence of the ground-state energy E on the system
size R evokes the case of the TTbar deformed models, in which all the quantities
obtainable from the TBA display a square-root singularity at the same value R = R⇤.
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while the constant term is vanishing up to the precision we used for our numerical
routines. We will see in §5 that this is the asymptotic behavior predicted by analytical
considerations. In the zoomed box in Figure 5 we also plotted a fit of the function
E(R) in the vicinity of the critical point R⇤. As expected the behavior in this region is
best described by the square-root function (3.18) (and (3.19) for the secondary branch),
with the coe�cients taking the following values
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Another notable fact is that we see no trace of additional singular points: the PALC
method can, apparently, reach arbitrarily large values of R on the secondary branch and
the resulting ground-state energy quickly approaches the expected asymptotic linear
behavior.

We note again that the behavior of E(R) depicted in Figure 5 is qualitatively
identical to the one exhibited by the ground-state energy of T T̄ -deformed models for
negative values of the deformation parameter ↵, as described in §2 (see e.g. Figure 2).

Finally, we stress that the features of E(R) described here for a point in the param-
eter space of a specific model really are representative of the general behavior of the
ground-state energy in the family of models defined by the S-matrices (3.1), at least
for what concerns the case of fermionic statistics. As we will discuss in §5 the status
of the models with bosonic statistics is still not completely settled. In particular it is
still unclear whether the secondary branch of E(R) displays additional critical points
or continues undisturbed in the deep IR and, if this was the case, what type of behavior
it follows.

4 Numerical Method

The results displayed in the previous section suggest that the solution to the TBA
equation (1.12), for S-matrices of the form (3.1), may generically possesses a singular
dependence on the parameter R. In particular the slope of the tangent to the graph of
E(R) apparently diverges at some R = R⇤. Such critical points are known as turning
points. Their presence in the dependence of the ground-state energy E on the system
size R evokes the case of the TTbar deformed models, in which all the quantities
obtainable from the TBA display a square-root singularity at the same value R = R⇤.
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The iterative procedure described in §3.1 becomes unstable at R ! R⇤, therefore it
is not particularly suitable for analyzing the vicinity of the singular point. Fortunately,
many powerful methods exist that are capable of handling numerically critical points
in non-linear equations. We refer to the nice monograph by Allgower and Georg [32]
for an introduction, paired with an extensive literature, to the subject. The simplest of
these numerical routines is the already mentioned PALC method which, in spite of the
simplicity of its implementation, will be entirely su�cient to handle the situations of
interest for us. In this section we will quickly review this method and its main features.

4.1 The pseudo-arc-length continuation method

Before starting let us point out a trivial fact: the TBA equation (1.12) is non-linear. It is
then not at all surprising that its solutions can develop a highly non-trivial dependence
on the parameters. Conversely, what is remarkable is that in the vast majority of
instances known in the literature, the solution to the TBA equations display a simple
behavior as functions of R. In full generality, we should expect a solution ✏(✓|R) to
potentially present, as a function of R

18, any type of critical point imaginable. As
we will see later, in the cases of the 1CDD and 2CDD models we are concerned with
here, only turning points appear. We will thus restrict our attention to the simple
cases in which every critical point is a turning point. This considerably simplifies
both the discussion and the actual implementation of the PALC method, although, if
needed, it is entirely possible – and not exceedingly di�cult – to include the existence
of bifurcations in the game.

Since our goal is to analyze the TBA equation (1.12) numerically, we are going to
describe the principles of the PALC for maps between finite-dimensional spaces. Let
us then truncate and discretize the real ✓-line on a N -point lattice {✓k | k = 1, 2, . . . , N}

which, for the moment, we are not going to specify further. Now, consider a parametrized
map H which takes as input a parameter R 2 R together with the values ✏k = ✏(✓k) 2 R
of some real function on the lattice, and yields N real numbers:

H :
RN

⇥ R �! RN

(~✏, R) 7�! ~H(~✏, R)
, (4.1)

where we packaged the values ✏k and Hk into vectors ~✏ and ~H. We wish to explore the
following fixed-point condition

~H(~✏, R) = ~0 . (4.2)

18In principle, the solution might possess critical points also in its dependence on the other parameters
present in the TBA equation. We found no hint of such a possibility and we will thus simplify our
discussion by concentrating on the dependence on the parameter R.
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The iterative procedure described in §3.1 becomes unstable at R ! R⇤, therefore it
is not particularly suitable for analyzing the vicinity of the singular point. Fortunately,
many powerful methods exist that are capable of handling numerically critical points
in non-linear equations. We refer to the nice monograph by Allgower and Georg [32]
for an introduction, paired with an extensive literature, to the subject. The simplest of
these numerical routines is the already mentioned PALC method which, in spite of the
simplicity of its implementation, will be entirely su�cient to handle the situations of
interest for us. In this section we will quickly review this method and its main features.

4.1 The pseudo-arc-length continuation method

Before starting let us point out a trivial fact: the TBA equation (1.12) is non-linear. It is
then not at all surprising that its solutions can develop a highly non-trivial dependence
on the parameters. Conversely, what is remarkable is that in the vast majority of
instances known in the literature, the solution to the TBA equations display a simple
behavior as functions of R. In full generality, we should expect a solution ✏(✓|R) to
potentially present, as a function of R

18, any type of critical point imaginable. As
we will see later, in the cases of the 1CDD and 2CDD models we are concerned with
here, only turning points appear. We will thus restrict our attention to the simple
cases in which every critical point is a turning point. This considerably simplifies
both the discussion and the actual implementation of the PALC method, although, if
needed, it is entirely possible – and not exceedingly di�cult – to include the existence
of bifurcations in the game.

Since our goal is to analyze the TBA equation (1.12) numerically, we are going to
describe the principles of the PALC for maps between finite-dimensional spaces. Let
us then truncate and discretize the real ✓-line on a N -point lattice {✓k | k = 1, 2, . . . , N}

which, for the moment, we are not going to specify further. Now, consider a parametrized
map H which takes as input a parameter R 2 R together with the values ✏k = ✏(✓k) 2 R
of some real function on the lattice, and yields N real numbers:

H :
RN

⇥ R �! RN

(~✏, R) 7�! ~H(~✏, R)
, (4.1)

where we packaged the values ✏k and Hk into vectors ~✏ and ~H. We wish to explore the
following fixed-point condition

~H(~✏, R) = ~0 . (4.2)

18In principle, the solution might possess critical points also in its dependence on the other parameters
present in the TBA equation. We found no hint of such a possibility and we will thus simplify our
discussion by concentrating on the dependence on the parameter R.
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The iterative procedure described in §3.1 becomes unstable at R ! R⇤, therefore it
is not particularly suitable for analyzing the vicinity of the singular point. Fortunately,
many powerful methods exist that are capable of handling numerically critical points
in non-linear equations. We refer to the nice monograph by Allgower and Georg [32]
for an introduction, paired with an extensive literature, to the subject. The simplest of
these numerical routines is the already mentioned PALC method which, in spite of the
simplicity of its implementation, will be entirely su�cient to handle the situations of
interest for us. In this section we will quickly review this method and its main features.

4.1 The pseudo-arc-length continuation method

Before starting let us point out a trivial fact: the TBA equation (1.12) is non-linear. It is
then not at all surprising that its solutions can develop a highly non-trivial dependence
on the parameters. Conversely, what is remarkable is that in the vast majority of
instances known in the literature, the solution to the TBA equations display a simple
behavior as functions of R. In full generality, we should expect a solution ✏(✓|R) to
potentially present, as a function of R

18, any type of critical point imaginable. As
we will see later, in the cases of the 1CDD and 2CDD models we are concerned with
here, only turning points appear. We will thus restrict our attention to the simple
cases in which every critical point is a turning point. This considerably simplifies
both the discussion and the actual implementation of the PALC method, although, if
needed, it is entirely possible – and not exceedingly di�cult – to include the existence
of bifurcations in the game.

Since our goal is to analyze the TBA equation (1.12) numerically, we are going to
describe the principles of the PALC for maps between finite-dimensional spaces. Let
us then truncate and discretize the real ✓-line on a N -point lattice {✓k | k = 1, 2, . . . , N}

which, for the moment, we are not going to specify further. Now, consider a parametrized
map H which takes as input a parameter R 2 R together with the values ✏k = ✏(✓k) 2 R
of some real function on the lattice, and yields N real numbers:

H :
RN

⇥ R �! RN

(~✏, R) 7�! ~H(~✏, R)
, (4.1)

where we packaged the values ✏k and Hk into vectors ~✏ and ~H. We wish to explore the
following fixed-point condition

~H(~✏, R) = ~0 . (4.2)

18In principle, the solution might possess critical points also in its dependence on the other parameters
present in the TBA equation. We found no hint of such a possibility and we will thus simplify our
discussion by concentrating on the dependence on the parameter R.
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The iterative procedure described in §3.1 becomes unstable at R ! R⇤, therefore it
is not particularly suitable for analyzing the vicinity of the singular point. Fortunately,
many powerful methods exist that are capable of handling numerically critical points
in non-linear equations. We refer to the nice monograph by Allgower and Georg [32]
for an introduction, paired with an extensive literature, to the subject. The simplest of
these numerical routines is the already mentioned PALC method which, in spite of the
simplicity of its implementation, will be entirely su�cient to handle the situations of
interest for us. In this section we will quickly review this method and its main features.

4.1 The pseudo-arc-length continuation method

Before starting let us point out a trivial fact: the TBA equation (1.12) is non-linear. It is
then not at all surprising that its solutions can develop a highly non-trivial dependence
on the parameters. Conversely, what is remarkable is that in the vast majority of
instances known in the literature, the solution to the TBA equations display a simple
behavior as functions of R. In full generality, we should expect a solution ✏(✓|R) to
potentially present, as a function of R

18, any type of critical point imaginable. As
we will see later, in the cases of the 1CDD and 2CDD models we are concerned with
here, only turning points appear. We will thus restrict our attention to the simple
cases in which every critical point is a turning point. This considerably simplifies
both the discussion and the actual implementation of the PALC method, although, if
needed, it is entirely possible – and not exceedingly di�cult – to include the existence
of bifurcations in the game.

Since our goal is to analyze the TBA equation (1.12) numerically, we are going to
describe the principles of the PALC for maps between finite-dimensional spaces. Let
us then truncate and discretize the real ✓-line on a N -point lattice {✓k | k = 1, 2, . . . , N}

which, for the moment, we are not going to specify further. Now, consider a parametrized
map H which takes as input a parameter R 2 R together with the values ✏k = ✏(✓k) 2 R
of some real function on the lattice, and yields N real numbers:

H :
RN

⇥ R �! RN

(~✏, R) 7�! ~H(~✏, R)
, (4.1)

where we packaged the values ✏k and Hk into vectors ~✏ and ~H. We wish to explore the
following fixed-point condition

~H(~✏, R) = ~0 . (4.2)

18In principle, the solution might possess critical points also in its dependence on the other parameters
present in the TBA equation. We found no hint of such a possibility and we will thus simplify our
discussion by concentrating on the dependence on the parameter R.
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of di↵erent
dimensionality, meaning

dim[Ker(H)] � 1 , (4.3)

or, in other words, the image of the null vector ~0 2 RN under the inverse map H
�1 is

a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⇢ R �! RN
⇥ R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~✏i, Ri)

to a final one Cf = (~✏f , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
@Hk

@✏l
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~✏ in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dR
C(R) diverges. Fortunately there exists a very

simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s 2 J ⇢ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H
0(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H
0(C(s)) =

 
J

�����
d ~H

dR

!
, (4.8)
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A Predictor-corrector routine

In general, a predictor-corrector routine is, as the name suggests, a two-step procedure
to solve an equation, by first performing an educated (numerical) guess and subse-
quently adjusting it. In the case we are concerned with, we wish to solve the equation

H(✏, R) = �✏(✓) +R cosh ✓ �

Z
d✓

0

2⇡
'(✓ � ✓

0) log
⇣
1 + e

�✏(✓0)
⌘
= 0 , (A.1)

with ' being the 2CDD kernel (3.12)

'(✓) =
X

�,�0=±1

1

cosh(✓ + �! + i�0�)
. (A.2)

Obviously, we are going to deal with an appropriate truncation and discretization of
the above equation, taking the following form

Hk(~✏, R) = �✏k +R cosh ✓k �
1

2⇡

X

l

�✓'kl log
⇣
1 + e

�✏l

⌘
= 0 , (A.3)

with �✓ being the lattice step (taken to be constant, for simplicity) and

'kl =
X

�,�0=±1

1

cosh((k � l)�✓ + �! + i�0�)
. (A.4)

The two steps of the predictor-corrector routine can be then described as follows
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of di↵erent
dimensionality, meaning

dim[Ker(H)] � 1 , (4.3)

or, in other words, the image of the null vector ~0 2 RN under the inverse map H
�1 is

a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⇢ R �! RN
⇥ R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~✏i, Ri)

to a final one Cf = (~✏f , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
@Hk

@✏l
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~✏ in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dR
C(R) diverges. Fortunately there exists a very

simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s 2 J ⇢ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H
0(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H
0(C(s)) =

 
J

�����
d ~H

dR

!
, (4.8)
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of di↵erent
dimensionality, meaning

dim[Ker(H)] � 1 , (4.3)

or, in other words, the image of the null vector ~0 2 RN under the inverse map H
�1 is

a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⇢ R �! RN
⇥ R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~✏i, Ri)

to a final one Cf = (~✏f , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
@Hk

@✏l
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~✏ in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dR
C(R) diverges. Fortunately there exists a very

simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s 2 J ⇢ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H
0(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H
0(C(s)) =

 
J

�����
d ~H

dR

!
, (4.8)
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of di↵erent
dimensionality, meaning

dim[Ker(H)] � 1 , (4.3)

or, in other words, the image of the null vector ~0 2 RN under the inverse map H
�1 is

a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⇢ R �! RN
⇥ R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~✏i, Ri)

to a final one Cf = (~✏f , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
@Hk

@✏l
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~✏ in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dR
C(R) diverges. Fortunately there exists a very

simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s 2 J ⇢ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H
0(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H
0(C(s)) =

 
J

�����
d ~H

dR

!
, (4.8)
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of di↵erent
dimensionality, meaning

dim[Ker(H)] � 1 , (4.3)

or, in other words, the image of the null vector ~0 2 RN under the inverse map H
�1 is

a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⇢ R �! RN
⇥ R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~✏i, Ri)

to a final one Cf = (~✏f , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
@Hk

@✏l
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~✏ in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dR
C(R) diverges. Fortunately there exists a very

simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s 2 J ⇢ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H
0(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H
0(C(s)) =

 
J

�����
d ~H

dR

!
, (4.8)
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of di↵erent
dimensionality, meaning

dim[Ker(H)] � 1 , (4.3)

or, in other words, the image of the null vector ~0 2 RN under the inverse map H
�1 is

a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⇢ R �! RN
⇥ R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~✏i, Ri)

to a final one Cf = (~✏f , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
@Hk

@✏l
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~✏ in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dR
C(R) diverges. Fortunately there exists a very

simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s 2 J ⇢ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H
0(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H
0(C(s)) =

 
J

�����
d ~H

dR

!
, (4.8)
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is a N ⇥ (N + 1) block matrix, while

Ċ(s) =

 
d

ds
~✏

d

ds
R

!
, (4.9)

is an (N +1) column vector. At this point we seem to be short of 1 condition, since we
introduced an additional parameter. However, remember that we decided to choose s

as the (pseudo-)arc-length of C, which means

||Ċ(s)|| = 1 . (4.10)

Summing up, we converted our non-linear problem, supported by the starting point
(~✏i, Ri), into an initial value problem

H
0(C(s))Ċ(s) = ~0 , ||Ċ(s)|| = 1 , C(si) = (~✏i, Ri) , (4.11)

capable of dealing with the presence of turning points. Still, this formulation is some-
what unnatural as it completely disregards the fact that the curve C is the fixed point
of the map H, and, as such, should enjoy powerful local contractive properties with
respect to iterative solution methods – such as Newton’s method. We are then led
to an integrated approach in which we numerically integrate (4.11) very coarsely and
subsequently employ some kind of iterative method to solve (4.6) locally. This is the
general strategy behind the approaches known as predictor-corrector routines. In Ap-
pendix A we are going to describe the one that we employed in this work and present
a pseudo-code of its implementation.

5 Results for the 2CDD model

Here we present some results obtained using the numerical techniques of the previous
Section. We first concentrate on the fermionic 2CDD models and then discuss some
facts about the bosonic models.

5.1 Fermionic case

The numerical data we collected, of which we have shown some example in §3.2, strongly
indicate the following properties of the ground-state energy E(R) as a function of R:

– E(R) is a double-valued function of R, in the range R > R⇤ with values in the
negative real numbers;

– The point R = R⇤ is a square-root branching point – or, using the terminology
of §4, a turning point – of the function E(R);
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is an (N +1) column vector. At this point we seem to be short of 1 condition, since we
introduced an additional parameter. However, remember that we decided to choose s

as the (pseudo-)arc-length of C, which means

||Ċ(s)|| = 1 . (4.10)

Summing up, we converted our non-linear problem, supported by the starting point
(~✏i, Ri), into an initial value problem

H
0(C(s))Ċ(s) = ~0 , ||Ċ(s)|| = 1 , C(si) = (~✏i, Ri) , (4.11)

capable of dealing with the presence of turning points. Still, this formulation is some-
what unnatural as it completely disregards the fact that the curve C is the fixed point
of the map H, and, as such, should enjoy powerful local contractive properties with
respect to iterative solution methods – such as Newton’s method. We are then led
to an integrated approach in which we numerically integrate (4.11) very coarsely and
subsequently employ some kind of iterative method to solve (4.6) locally. This is the
general strategy behind the approaches known as predictor-corrector routines. In Ap-
pendix A we are going to describe the one that we employed in this work and present
a pseudo-code of its implementation.

5 Results for the 2CDD model

Here we present some results obtained using the numerical techniques of the previous
Section. We first concentrate on the fermionic 2CDD models and then discuss some
facts about the bosonic models.

5.1 Fermionic case

The numerical data we collected, of which we have shown some example in §3.2, strongly
indicate the following properties of the ground-state energy E(R) as a function of R:

– E(R) is a double-valued function of R, in the range R > R⇤ with values in the
negative real numbers;

– The point R = R⇤ is a square-root branching point – or, using the terminology
of §4, a turning point – of the function E(R);
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is an (N +1) column vector. At this point we seem to be short of 1 condition, since we
introduced an additional parameter. However, remember that we decided to choose s

as the (pseudo-)arc-length of C, which means

||Ċ(s)|| = 1 . (4.10)

Summing up, we converted our non-linear problem, supported by the starting point
(~✏i, Ri), into an initial value problem

H
0(C(s))Ċ(s) = ~0 , ||Ċ(s)|| = 1 , C(si) = (~✏i, Ri) , (4.11)

capable of dealing with the presence of turning points. Still, this formulation is some-
what unnatural as it completely disregards the fact that the curve C is the fixed point
of the map H, and, as such, should enjoy powerful local contractive properties with
respect to iterative solution methods – such as Newton’s method. We are then led
to an integrated approach in which we numerically integrate (4.11) very coarsely and
subsequently employ some kind of iterative method to solve (4.6) locally. This is the
general strategy behind the approaches known as predictor-corrector routines. In Ap-
pendix A we are going to describe the one that we employed in this work and present
a pseudo-code of its implementation.

5 Results for the 2CDD model

Here we present some results obtained using the numerical techniques of the previous
Section. We first concentrate on the fermionic 2CDD models and then discuss some
facts about the bosonic models.

5.1 Fermionic case

The numerical data we collected, of which we have shown some example in §3.2, strongly
indicate the following properties of the ground-state energy E(R) as a function of R:

– E(R) is a double-valued function of R, in the range R > R⇤ with values in the
negative real numbers;

– The point R = R⇤ is a square-root branching point – or, using the terminology
of §4, a turning point – of the function E(R);
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• Predictor. This part of the routine takes as input a point c(sj) = (~✏j , Rj) on
the solution curve and uses the initial value problem form (4.11), which we recall
here

H
0(c(s))ċ(s) = ~0 , ||ċ(s)|| = 1 , c(sj) = (~✏j , Rj) , (A.5)

to yield a reasonable guess for a new point c(0)(sj+1) = (~✏ (0)
j+1, R

(0)
j+1). The simplest

way to obtain such a point is to employ the so-called Euler predictor, which
implements the equation

(~✏ (0)
j+1, R

(0)
j+1) = (~✏j , Rj) + �s

tj

||tj ||
, (A.6)

where the N + 1 vector tj is tangent to the extended Jacobian H
0(c(s)) at the

point (~✏j , Rj):

H
0(~✏j , Rj)tj = 0 . (A.7)

• Corrector. This second part of the routine engages in the problem of adjusting

the predictor’s output (~✏ (0)
j+1, R

(0)
j+1) to a point actually lying on the solution curve.

It does so by some iterative method for solving the equation ~H = 0 starting
from an initial, reasonably close, guess. The fastest and least expensive of these
methods is the Newton’s one, which in our case would take the following form

~✏
(`+1)
j+1 = ~✏

(`)
j+1 � [J (~✏ (`)

j+1, R
(`)
j+1)]

�1
H(~✏ (`)
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(`+1)
j+1 = R

(`+1)
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(A.8)

if only we were not worried to encounter a point where J is not invertible. In
fact we are concerned precisely with such an eventuality, it being the very reason
that led us to consider the PALC method and the associated predictor-corrector
routine. Hence, we need to appropriately modify Newton’s method in order to
accommodate the possibility of a singular J , with H

0 of maximal rank N . The
way to handle such a situation is to consider the concept of quasi-inverse (also
called Moore-Penrose inverse) A+ of a matrix A, defined as

A
+ = A

T (AA
T )�1

, (A.9)

where a superscript T denotes standard matrix transposition. Notice that, if A is
a square matrix, the above definition is equivalent to the standard inverse. Now,
if A is instead an N ⇥ (N + 1) matrix of maximal rank N and t is its tangent
vector At = 0, then the following statements are equivalent

1. Ax = b and t
T
x = 0,
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2. x = A
+
b,

3. x = min
v

h
||v||

��� Av = b

i
which, in plain words, means that x is the vector of

minimal norm which solves the equation Ax = b.

Without going too much in the details (see chapter 3 of [32]), the takeaway is
that we can implement Newton’s method in the usual way, as long as we trade
the inverse of the Jacobian for the quasi-inverse of the extended Jacobian:

(~✏ (`+1)
j+1 , R

(`+1)
j+1 ) = (~✏ (`)

j+1, R
(`)
j+1)� [H 0(~✏ (`)

j+1, R
(`)
j+1)]

+
H(~✏ (`)

j+1, R
(`)
j+1) . (A.10)

The above equation is then iterated as long as necessary, until reaching a point

(~✏ (L)
j+1, R

(L)
j+1) ⌘ (~✏j+1, Rj+1) deemed, by some appropriate convergence test, close

enough to a point on the solution curve.

Here follows a pseudo-code summarizing the procedure expounded above. As we can
immediately see, the algorithm requires an initial point solving the TBA equation. This
can be provided by using the standard iterative procedure of §3.1 to solve the equation
at some value of R > R⇤. This will yield a solution (~✏0, R0) on the first branch, from
which to start the PALC.
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Moving in the curve:

N ⇥ (N + 1)
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Figure 5: Here is plotted the ground-state energy E(R) for the model with S-matrix
(3.11) with ✓0 = 1/2 and � = 3⇡/20, obtained through the PALC routine described in
§4. The numerical points are sided by three lines, approximating E(R) for large R on
both branches and for R & R⇤.

More specifically let us set ✓0 = 1/2 and � = 3⇡/20 and compute numerically
the ground-state energy of the model defined by the S-matrix (3.11). The result is
displayed in Figure 5. We see that the function E(R) does indeed possess two branches
with distinctly di↵erent IR behavior. The primary branch is characterized by the
universal IR behavior

E(R) ⇠
R!1

�
1

⇡
K1(R) +O

�
e
�2R

�
, (3.20)

whereK1 stands for the modified Bessel function while the secondary branch approaches
a linear behavior at large R

Ẽ(R) ⇠
R!1

�"�R , (3.21)

with a rate of approach likely to be some negative power of R. For the specific case
depicted in Figure 5 the coe�cient of the linear term is found to be

"�
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2
, � =

3⇡

20

◆
= �2.87452 . . . , (3.22)
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:

d(✓) = R cosh ✓ , �(✓) =

Z
'(✓ � ✓

0) log
h
1 + e

�✏(✓0)
i
d✓

0

2⇡
. (5.2)

As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
R!1

d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,

�(✓) ⇠
R!1

Z
'(✓ � ✓

0) log
h
1 + e

�R cosh ✓
0
i
d✓

0

2⇡
⇠

R!1

'(✓)
p
2⇡R

e
�R

⌧
R!1

R cosh ✓ . (5.4)

However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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Some analytical results: 
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(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:

d(✓) = R cosh ✓ , �(✓) =

Z
'(✓ � ✓

0) log
h
1 + e

�✏(✓0)
i
d✓

0

2⇡
. (5.2)

As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
R!1

d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,

�(✓) ⇠
R!1

Z
'(✓ � ✓

0) log
h
1 + e

�R cosh ✓
0
i
d✓

0

2⇡
⇠

R!1

'(✓)
p
2⇡R

e
�R

⌧
R!1

R cosh ✓ . (5.4)

However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
R!1

d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
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which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
R!1

d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
R!1

d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
R!1

d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
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which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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– There is no sign of additional turning or singular points other than R = R⇤;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

✏(✓) = d(✓)� �(✓) , (5.1)

where d(✓) is the driving term and �(✓) the convolution:
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As R ! 1, the driving term becomes large, ⇠ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ✏(✓), �(✓) or both.
The standard assumption is that

✏(✓) ⇠
R!1

d(✓) , �(✓) ⌧
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d(✓) , (5.3)

which turns out to be consistent, since, as one easily verifies,
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However this is not, in general, the only possibility. It might be the case that the
convolution term �(✓) is diverging as R ! 1 and becomes comparable with either
✏(✓), d(✓) or both. It is then not di�cult to check that only two possibilities are
consistent:

1. ✏(✓) �!
R!1

0 and the kernel '(✓) is not integrable on the real line;

2. ✏(✓) ⇠
R!1

�Rf(✓) where f(✓) is positive only in some finite19 subset ⇥ ⇢ R of

the real line and negative everywhere else.

19The subset ⇥ cannot be infinite, since the equation (5.1) forces ✏(✓) to behave as d(✓) for ✓ ! ±1.
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

✏(✓) ⇠
R!1

�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows
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R!1
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i
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2⇡
. (5.6)

Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +

Z

⇥

'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound

0 

Z

⇥

'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
 Max

t2⇥
[f(t)]

Z
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d✓
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2⇡
. (5.8)

Now, let ✓M 2 ⇥ be such that f(✓M) = Max
t2⇥

[f(t)], then the following inequalities are

true

� cosh ✓M  f(✓M)  � cosh ✓M + f(✓M)

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
. (5.9)

Rearranging the right inequality above, we find that

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
� 1 +

cosh ✓M
f(✓M)

> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

✏(✓) ⇠
R!1

�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows
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R!1

R
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⇥

'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
+

Z

R

'(✓ � ✓
0) log

h
1 + e

�R|f(✓0)|
i
d✓

0

2⇡
. (5.6)

Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +

Z

⇥

'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound
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2⇡
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[f(t)]
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'(✓ � ✓
0)
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0

2⇡
. (5.8)

Now, let ✓M 2 ⇥ be such that f(✓M) = Max
t2⇥

[f(t)], then the following inequalities are

true

� cosh ✓M  f(✓M)  � cosh ✓M + f(✓M)

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
. (5.9)

Rearranging the right inequality above, we find that

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
� 1 +

cosh ✓M
f(✓M)

> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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(3.17), counts the number N of CDD factors appearing in the S-matrix (3.1). But,
since we assumed that ⇥ is a finite subset of R, we find that

N >

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
> 1 =) N > 1 . (5.11)

Thus we have found that the fermionic 1CDD models, namely sinh-Gordon and the
staicase models, can only display the standard large R behavior (5.3), (5.4). We stress
that this result should not be read as a proof of the absence of turning points in these
models, but rather as a sanity check for the correctness of our computations, since
the ground-state energy for fermionic 1CDD models is well known to be a smooth and
monotonously increasing function of the radius in the whole range R > 0. Conversely,
all fermionic NCDD models with N > 1 allow for both the standard large R behavior
(5.3), (5.4) and the non-standard one (5.5). Consequently, their ground-state energy
will possibly display both the asymptotic behavior (3.20) and (3.21), where

"� =

Z

⇥

cosh ✓ f(✓) d✓ , (5.12)

in accordance with the numerical data we have obtained.

5.1.2 Analysis of the numerical data

The fermionic 2CDD models were classified in §3 into cases (a) to (d). We have per-
formed numerical analysis for all the di↵erent cases and the results show that the
behaviors are qualitatively the same. Thus, we are going to show here the details of
the numerical analysis only for the representative case (d). We begin by analyzing
the numerical solution obtained through the PALC method for large values of R. It
was argued in the previous section that the pseudoenergy should behave as in (5.5),
assuming negative values in a finite subset of the real line and positive values elsewhere.
This is indeed checked to be true for all the 2CDD models under consideration, as il-
lustrated for a particular member of this family in Figure 6, and to be contrasted with
the standard iterative solution (the primary branch) which is positive everywhere. The
numerics indicate that the negativity region is always a single interval centered at the
origin of the form ⇥ = {✓ 2 R | � ⇤  ✓  ⇤}. They also indicate that the inter-
val size ⇤ is model-dependent. In particular, it seems to grow with ✓0 and decreases
with �. Nevertheless, the precise dependence of ⇤ on the parameters deserves further
investigation.

We then proceed to analyze the secondary branch solution in the opposite extremum
of R, i.e., as R approaches the critical value R⇤. For some of the plots it will be
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

✏(✓) ⇠
R!1

�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows

�(✓) ⇠
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Z
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'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
+

Z

R

'(✓ � ✓
0) log

h
1 + e

�R|f(✓0)|
i
d✓

0

2⇡
. (5.6)

Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +

Z

⇥

'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound
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d✓
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2⇡
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[f(t)]
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0)
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. (5.8)

Now, let ✓M 2 ⇥ be such that f(✓M) = Max
t2⇥

[f(t)], then the following inequalities are

true

� cosh ✓M  f(✓M)  � cosh ✓M + f(✓M)

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
. (5.9)

Rearranging the right inequality above, we find that

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
� 1 +

cosh ✓M
f(✓M)

> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that
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�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows
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Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +
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0) f(✓0)
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0
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. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound
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Now, let ✓M 2 ⇥ be such that f(✓M) = Max
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[f(t)], then the following inequalities are
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Rearranging the right inequality above, we find that
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� 1 +
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> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

✏(✓) ⇠
R!1

�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows
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Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +
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0) f(✓0)
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0
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. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound
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Now, let ✓M 2 ⇥ be such that f(✓M) = Max
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[f(t)], then the following inequalities are

true
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Rearranging the right inequality above, we find that
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0

2⇡
� 1 +

cosh ✓M
f(✓M)

> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

✏(✓) ⇠
R!1

�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows
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Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +
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'(✓ � ✓
0) f(✓0)
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0
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. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound
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Now, let ✓M 2 ⇥ be such that f(✓M) = Max
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[f(t)], then the following inequalities are
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Rearranging the right inequality above, we find that
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� 1 +

cosh ✓M
f(✓M)

> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of ✓ 2 R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

✏(✓) ⇠
R!1

�Rf(✓) ,

⇢
f(✓) > 0 , ✓ 2 ⇥ ⇢ R ,

f(✓)  0 ✓ 2 ⇥? = R�⇥ ,
(5.5)

the convolution can be approximated as follows
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Discarding the second term in the right-hand side, we arrive at the linear equation

f(✓) = � cosh ✓ +

Z

⇥

'(✓ � ✓
0) f(✓0)

d✓
0

2⇡
. (5.7)

Due to our hypothesis on the function f(✓), we see that the integrand in the right-hand
side above is positive for any (✓, ✓0) 2 R2, which implies the following bound
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Now, let ✓M 2 ⇥ be such that f(✓M) = Max
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[f(t)], then the following inequalities are
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Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
. (5.9)

Rearranging the right inequality above, we find that
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0

2⇡
� 1 +

cosh ✓M
f(✓M)

> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
�entire(✓) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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(3.17), counts the number N of CDD factors appearing in the S-matrix (3.1). But,
since we assumed that ⇥ is a finite subset of R, we find that

N >

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
> 1 =) N > 1 . (5.11)

Thus we have found that the fermionic 1CDD models, namely sinh-Gordon and the
staicase models, can only display the standard large R behavior (5.3), (5.4). We stress
that this result should not be read as a proof of the absence of turning points in these
models, but rather as a sanity check for the correctness of our computations, since
the ground-state energy for fermionic 1CDD models is well known to be a smooth and
monotonously increasing function of the radius in the whole range R > 0. Conversely,
all fermionic NCDD models with N > 1 allow for both the standard large R behavior
(5.3), (5.4) and the non-standard one (5.5). Consequently, their ground-state energy
will possibly display both the asymptotic behavior (3.20) and (3.21), where

"� =

Z

⇥

cosh ✓ f(✓) d✓ , (5.12)

in accordance with the numerical data we have obtained.

5.1.2 Analysis of the numerical data

The fermionic 2CDD models were classified in §3 into cases (a) to (d). We have per-
formed numerical analysis for all the di↵erent cases and the results show that the
behaviors are qualitatively the same. Thus, we are going to show here the details of
the numerical analysis only for the representative case (d). We begin by analyzing
the numerical solution obtained through the PALC method for large values of R. It
was argued in the previous section that the pseudoenergy should behave as in (5.5),
assuming negative values in a finite subset of the real line and positive values elsewhere.
This is indeed checked to be true for all the 2CDD models under consideration, as il-
lustrated for a particular member of this family in Figure 6, and to be contrasted with
the standard iterative solution (the primary branch) which is positive everywhere. The
numerics indicate that the negativity region is always a single interval centered at the
origin of the form ⇥ = {✓ 2 R | � ⇤  ✓  ⇤}. They also indicate that the inter-
val size ⇤ is model-dependent. In particular, it seems to grow with ✓0 and decreases
with �. Nevertheless, the precise dependence of ⇤ on the parameters deserves further
investigation.

We then proceed to analyze the secondary branch solution in the opposite extremum
of R, i.e., as R approaches the critical value R⇤. For some of the plots it will be
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Figure 6: Pseudoenergy ✏(✓) for the secondary branch solution (blue) at large values of
R, showing the expected behavior (5.5), namely it is below 0 (marked with the dashed
line) in a finite interval. Corresponding behavior of the iterative solution (red). Here
the model parameters are ✓0 = 2 and � = 4⇡/10, though we checked the qualitative
picture to remain the same within the whole set of admissible values of ✓0 and �.

convenient to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with x⇤ = log(R⇤/2) for the corresponding
critical point). Here we find it more instructive to display L(✓) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R⇤ after which they become complex-valued.
For each R, the function L(✓) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R⇤ could in principle have a dependence on ✓. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ✏(✓) for at least ten di↵erent values
of x di↵ering from each other and from x⇤ by 10�8. Then, we selected several values of
✓ and for each value we performed a square root fit of the form a(✓)+b(✓)

p
�x⇤(✓) + x.

The fits were done using Mathematica’s NonlinearModelFit function by giving an ini-
tial estimate for x⇤(✓). By comparing all the obtained x⇤(✓), we verified that they agree
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Figure 6: Pseudoenergy ✏(✓) for the secondary branch solution (blue) at large values of
R, showing the expected behavior (5.5), namely it is below 0 (marked with the dashed
line) in a finite interval. Corresponding behavior of the iterative solution (red). Here
the model parameters are ✓0 = 2 and � = 4⇡/10, though we checked the qualitative
picture to remain the same within the whole set of admissible values of ✓0 and �.

convenient to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with x⇤ = log(R⇤/2) for the corresponding
critical point). Here we find it more instructive to display L(✓) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R⇤ after which they become complex-valued.
For each R, the function L(✓) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R⇤ could in principle have a dependence on ✓. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ✏(✓) for at least ten di↵erent values
of x di↵ering from each other and from x⇤ by 10�8. Then, we selected several values of
✓ and for each value we performed a square root fit of the form a(✓)+b(✓)

p
�x⇤(✓) + x.

The fits were done using Mathematica’s NonlinearModelFit function by giving an ini-
tial estimate for x⇤(✓). By comparing all the obtained x⇤(✓), we verified that they agree
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(3.17), counts the number N of CDD factors appearing in the S-matrix (3.1). But,
since we assumed that ⇥ is a finite subset of R, we find that

N >

Z

⇥

'(✓M � ✓
0)
d✓

0

2⇡
> 1 =) N > 1 . (5.11)

Thus we have found that the fermionic 1CDD models, namely sinh-Gordon and the
staicase models, can only display the standard large R behavior (5.3), (5.4). We stress
that this result should not be read as a proof of the absence of turning points in these
models, but rather as a sanity check for the correctness of our computations, since
the ground-state energy for fermionic 1CDD models is well known to be a smooth and
monotonously increasing function of the radius in the whole range R > 0. Conversely,
all fermionic NCDD models with N > 1 allow for both the standard large R behavior
(5.3), (5.4) and the non-standard one (5.5). Consequently, their ground-state energy
will possibly display both the asymptotic behavior (3.20) and (3.21), where

"� =

Z

⇥

cosh ✓ f(✓) d✓ , (5.12)

in accordance with the numerical data we have obtained.

5.1.2 Analysis of the numerical data

The fermionic 2CDD models were classified in §3 into cases (a) to (d). We have per-
formed numerical analysis for all the di↵erent cases and the results show that the
behaviors are qualitatively the same. Thus, we are going to show here the details of
the numerical analysis only for the representative case (d). We begin by analyzing
the numerical solution obtained through the PALC method for large values of R. It
was argued in the previous section that the pseudoenergy should behave as in (5.5),
assuming negative values in a finite subset of the real line and positive values elsewhere.
This is indeed checked to be true for all the 2CDD models under consideration, as il-
lustrated for a particular member of this family in Figure 6, and to be contrasted with
the standard iterative solution (the primary branch) which is positive everywhere. The
numerics indicate that the negativity region is always a single interval centered at the
origin of the form ⇥ = {✓ 2 R | � ⇤  ✓  ⇤}. They also indicate that the inter-
val size ⇤ is model-dependent. In particular, it seems to grow with ✓0 and decreases
with �. Nevertheless, the precise dependence of ⇤ on the parameters deserves further
investigation.

We then proceed to analyze the secondary branch solution in the opposite extremum
of R, i.e., as R approaches the critical value R⇤. For some of the plots it will be
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Figure 6: Pseudoenergy ✏(✓) for the secondary branch solution (blue) at large values of
R, showing the expected behavior (5.5), namely it is below 0 (marked with the dashed
line) in a finite interval. Corresponding behavior of the iterative solution (red). Here
the model parameters are ✓0 = 2 and � = 4⇡/10, though we checked the qualitative
picture to remain the same within the whole set of admissible values of ✓0 and �.

convenient to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with x⇤ = log(R⇤/2) for the corresponding
critical point). Here we find it more instructive to display L(✓) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R⇤ after which they become complex-valued.
For each R, the function L(✓) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R⇤ could in principle have a dependence on ✓. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ✏(✓) for at least ten di↵erent values
of x di↵ering from each other and from x⇤ by 10�8. Then, we selected several values of
✓ and for each value we performed a square root fit of the form a(✓)+b(✓)

p
�x⇤(✓) + x.

The fits were done using Mathematica’s NonlinearModelFit function by giving an ini-
tial estimate for x⇤(✓). By comparing all the obtained x⇤(✓), we verified that they agree
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corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).
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tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
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Figure 7: L(✓) for both the primary (red) and secondary (blue) branch solutions as
R approaches the critical value R⇤. For each color (blue or red), the color gradient
indicates the decrease of R towards R⇤, where the two branches merge. Here ✓0 = 5
and � = 4⇡/10, which lead to R⇤ ⇡ 0.0192.

up to errors greater than 10�8 which was our minimal working precision. The analysis
was performed for several values of ✓0 and for � in the range 0  �  (99/200)⇡. In
many cases, when the number of necessary points in the discretized ✓ grid was not very
high it was possible to work with even higher precision. In those cases, another way of
getting x⇤ with high precision is by assuming a square root behavior for the pseudoen-
ergy and solving the resulting equations using Mathematica’s FindRoot function.

In addition, we also verified that R⇤ depends smoothly on the model parameters ✓0
and �, as shown in Figure 8 for both the fermionic and bosonic models. In particular,

for large ✓0 we have the asymptotic behavior x⇤ = log(R⇤/2) ⇡ �✓0+x
(0)
⇤ (see §5.3 for a

derivation in the special limit where � is close to ⇡/2, for which x
(0)
⇤ = log log(2+2

p
2);

for other values of � the linear term remains the same, though x
(0)
⇤ is di↵erent).

5.2 Bosonic case

We have also repeated the analysis described above using the PALC method to the
case of bosonic systems. The numerical routine used in this case only di↵ers from
the fermionic case by a few signs. As already mentioned in §3, the solutions to the
TBA equation for the bosonic models have intricate behavior already for the 1CDD
cases. It was first noticed in [19] (for the case of real u1, in the notation of (3.7)) that
the numerical iterative routine stops converging for some R⇤ and returns a complex
solution. In fact, we have verified numerically that all the bosonic models up to two
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and the product in (1.8) involves finitely many factors, i.e. N < 1. Note that, unlike
(1.3), such CDD factors have regular limits at ✓ ! ±1. Therefore, if the undeformed
S-matrix S0(✓) behaves regularly – presenting no abnormal growth of the scattering
phase – at large ✓, so does the deformed S-matrix S0(✓)�(✓). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described a↵ect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(✓), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(✓) of the form (1.8)7. There are two substan-
tially di↵erent cases, depending on the sign of S(0) = � = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when � = +1 and “fermionic TBA” for � = �1.
Given S(✓), let '(✓) be the derivative of the scattering phase,

'(✓) =
1

i

d

d✓
logS(✓) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ✏(✓), the pseudo-energy,

✏(✓) = R cosh ✓ �

Z
'(✓ � ✓

0)L(✓0)
d✓

0

2⇡
, (1.12)

where

L(✓) := �� log
⇣
1� � e

�✏(✓)
⌘

. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = �

Z 1

�1
cosh ✓L(✓)

d✓

2⇡
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(✓) = ±1.
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Figure 8: Dependence of the critical x⇤ in the model parameters. Black lines corre-
spond to fermionic 2CDD models, red lines correspond to bosonic ones. On (a), we
demonstrate the validity of the narrow resonance limit approximation for x⇤ (red and
black bullets/boxes), see in 5.3.

CDD factors behave similarly to the fermionic 2CDD models of previous section, i.e.,
they have a “primary branch” and a “secondary branch” which merge at a critical scale
R⇤, where the energies E(R) have square-root singularities in R⇤, and the value of R⇤
is independent of ✓.

There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with � = +1 and an NCDD kernel (3.1),
and introduce the following function

✏̃(✓) = log
h
e
✏(✓)

� 1
i
. (5.14)

Some trivial manipulations show that this function satisfies a fermionic TBA equation
with kernel

'̃(✓) = '(✓) + 2⇡�(✓) , (5.15)

with the �(✓) being the Dirac �-function. Therefore, a general bosonic NCDD model
is equivalent to the (N + 1)CDD fermionic TBA, taken in the limit when uN+1 ! 0
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Figure 6: Pseudoenergy ✏(✓) for the secondary branch solution (blue) at large values of
R, showing the expected behavior (5.5), namely it is below 0 (marked with the dashed
line) in a finite interval. Corresponding behavior of the iterative solution (red). Here
the model parameters are ✓0 = 2 and � = 4⇡/10, though we checked the qualitative
picture to remain the same within the whole set of admissible values of ✓0 and �.

convenient to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with x⇤ = log(R⇤/2) for the corresponding
critical point). Here we find it more instructive to display L(✓) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R⇤ after which they become complex-valued.
For each R, the function L(✓) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R⇤ could in principle have a dependence on ✓. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ✏(✓) for at least ten di↵erent values
of x di↵ering from each other and from x⇤ by 10�8. Then, we selected several values of
✓ and for each value we performed a square root fit of the form a(✓)+b(✓)

p
�x⇤(✓) + x.

The fits were done using Mathematica’s NonlinearModelFit function by giving an ini-
tial estimate for x⇤(✓). By comparing all the obtained x⇤(✓), we verified that they agree
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critical point). Here we find it more instructive to display L(✓) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R⇤ after which they become complex-valued.
For each R, the function L(✓) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R⇤ could in principle have a dependence on ✓. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
✓-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ✏(✓) for at least ten di↵erent values
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Figure 7: L(✓) for both the primary (red) and secondary (blue) branch solutions as
R approaches the critical value R⇤. For each color (blue or red), the color gradient
indicates the decrease of R towards R⇤, where the two branches merge. Here ✓0 = 5
and � = 4⇡/10, which lead to R⇤ ⇡ 0.0192.

up to errors greater than 10�8 which was our minimal working precision. The analysis
was performed for several values of ✓0 and for � in the range 0  �  (99/200)⇡. In
many cases, when the number of necessary points in the discretized ✓ grid was not very
high it was possible to work with even higher precision. In those cases, another way of
getting x⇤ with high precision is by assuming a square root behavior for the pseudoen-
ergy and solving the resulting equations using Mathematica’s FindRoot function.

In addition, we also verified that R⇤ depends smoothly on the model parameters ✓0
and �, as shown in Figure 8 for both the fermionic and bosonic models. In particular,

for large ✓0 we have the asymptotic behavior x⇤ = log(R⇤/2) ⇡ �✓0+x
(0)
⇤ (see §5.3 for a

derivation in the special limit where � is close to ⇡/2, for which x
(0)
⇤ = log log(2+2

p
2);

for other values of � the linear term remains the same, though x
(0)
⇤ is di↵erent).

5.2 Bosonic case

We have also repeated the analysis described above using the PALC method to the
case of bosonic systems. The numerical routine used in this case only di↵ers from
the fermionic case by a few signs. As already mentioned in §3, the solutions to the
TBA equation for the bosonic models have intricate behavior already for the 1CDD
cases. It was first noticed in [19] (for the case of real u1, in the notation of (3.7)) that
the numerical iterative routine stops converging for some R⇤ and returns a complex
solution. In fact, we have verified numerically that all the bosonic models up to two
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and �, as shown in Figure 8 for both the fermionic and bosonic models. In particular,
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case of bosonic systems. The numerical routine used in this case only di↵ers from
the fermionic case by a few signs. As already mentioned in §3, the solutions to the
TBA equation for the bosonic models have intricate behavior already for the 1CDD
cases. It was first noticed in [19] (for the case of real u1, in the notation of (3.7)) that
the numerical iterative routine stops converging for some R⇤ and returns a complex
solution. In fact, we have verified numerically that all the bosonic models up to two

29

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

�6 �4 �2 0 2 4 6

0

2

4

✓

L
(✓
)

R = 0.0257
R = 0.0225
R = 0.0200
R = 0.0193
R = 0.0193
R = 0.0200
R = 0.0225
R = 0.0257

Figure 7: L(✓) for both the primary (red) and secondary (blue) branch solutions as
R approaches the critical value R⇤. For each color (blue or red), the color gradient
indicates the decrease of R towards R⇤, where the two branches merge. Here ✓0 = 5
and � = 4⇡/10, which lead to R⇤ ⇡ 0.0192.

up to errors greater than 10�8 which was our minimal working precision. The analysis
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many cases, when the number of necessary points in the discretized ✓ grid was not very
high it was possible to work with even higher precision. In those cases, another way of
getting x⇤ with high precision is by assuming a square root behavior for the pseudoen-
ergy and solving the resulting equations using Mathematica’s FindRoot function.

In addition, we also verified that R⇤ depends smoothly on the model parameters ✓0
and �, as shown in Figure 8 for both the fermionic and bosonic models. In particular,
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ergy and solving the resulting equations using Mathematica’s FindRoot function.
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and �, as shown in Figure 8 for both the fermionic and bosonic models. In particular,
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(0)
⇤ = log log(2+2

p
2);
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5.2 Bosonic case

We have also repeated the analysis described above using the PALC method to the
case of bosonic systems. The numerical routine used in this case only di↵ers from
the fermionic case by a few signs. As already mentioned in §3, the solutions to the
TBA equation for the bosonic models have intricate behavior already for the 1CDD
cases. It was first noticed in [19] (for the case of real u1, in the notation of (3.7)) that
the numerical iterative routine stops converging for some R⇤ and returns a complex
solution. In fact, we have verified numerically that all the bosonic models up to two
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Figure 8: Dependence of the critical x⇤ in the model parameters. Black lines corre-
spond to fermionic 2CDD models, red lines correspond to bosonic ones. On (a), we
demonstrate the validity of the narrow resonance limit approximation for x⇤ (red and
black bullets/boxes), see in 5.3.

CDD factors behave similarly to the fermionic 2CDD models of previous section, i.e.,
they have a “primary branch” and a “secondary branch” which merge at a critical scale
R⇤, where the energies E(R) have square-root singularities in R⇤, and the value of R⇤
is independent of ✓.

There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with � = +1 and an NCDD kernel (3.1),
and introduce the following function

✏̃(✓) = log
h
e
✏(✓)

� 1
i
. (5.14)

Some trivial manipulations show that this function satisfies a fermionic TBA equation
with kernel

'̃(✓) = '(✓) + 2⇡�(✓) , (5.15)

with the �(✓) being the Dirac �-function. Therefore, a general bosonic NCDD model
is equivalent to the (N + 1)CDD fermionic TBA, taken in the limit when uN+1 ! 0
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There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with � = +1 and an NCDD kernel (3.1),
and introduce the following function
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with kernel
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with the �(✓) being the Dirac �-function. Therefore, a general bosonic NCDD model
is equivalent to the (N + 1)CDD fermionic TBA, taken in the limit when uN+1 ! 0
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they have a “primary branch” and a “secondary branch” which merge at a critical scale
R⇤, where the energies E(R) have square-root singularities in R⇤, and the value of R⇤
is independent of ✓.

There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with � = +1 and an NCDD kernel (3.1),
and introduce the following function
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Some trivial manipulations show that this function satisfies a fermionic TBA equation
with kernel

'̃(✓) = '(✓) + 2⇡�(✓) , (5.15)

with the �(✓) being the Dirac �-function. Therefore, a general bosonic NCDD model
is equivalent to the (N + 1)CDD fermionic TBA, taken in the limit when uN+1 ! 0

30

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
7
8
P
_
0
7
2
1
 
v
2

0 0.2 0.4
�5

�4

�3

�2

�1

0

�/⇡

x
⇤

✓0 = 0 ✓0 = 0
✓0 = 1/2 ✓0 = 1/2
✓0 = 5 ✓0 = 5

(a) � dependence of x⇤.

0 5 10
�10

�8

�6

�4

�2

0

✓0

x
⇤

Fermionic
Bosonic

(b) ✓0 dependence of x⇤ with � = 2⇡/5

Figure 8: Dependence of the critical x⇤ in the model parameters. Black lines corre-
spond to fermionic 2CDD models, red lines correspond to bosonic ones. On (a), we
demonstrate the validity of the narrow resonance limit approximation for x⇤ (red and
black bullets/boxes), see in 5.3.

CDD factors behave similarly to the fermionic 2CDD models of previous section, i.e.,
they have a “primary branch” and a “secondary branch” which merge at a critical scale
R⇤, where the energies E(R) have square-root singularities in R⇤, and the value of R⇤
is independent of ✓.

There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with � = +1 and an NCDD kernel (3.1),
and introduce the following function

✏̃(✓) = log
h
e
✏(✓)

� 1
i
. (5.14)

Some trivial manipulations show that this function satisfies a fermionic TBA equation
with kernel

'̃(✓) = '(✓) + 2⇡�(✓) , (5.15)

with the �(✓) being the Dirac �-function. Therefore, a general bosonic NCDD model
is equivalent to the (N + 1)CDD fermionic TBA, taken in the limit when uN+1 ! 0
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Figure 8: Dependence of the critical x⇤ in the model parameters. Black lines corre-
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demonstrate the validity of the narrow resonance limit approximation for x⇤ (red and
black bullets/boxes), see in 5.3.
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PALC method jumps back to the iterative solution   

Bosonic Case
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Figure 9: L(✓) for the 2CDD bosonic model of type (d) with ✓0 = 5 and � = 3⇡/10,
in which case R⇤ ⇡ 0.2382. Similarly to the fermionic case the function L(✓) for the
secondary branch is everywhere greater than the one for the first branch.

(see (3.6))21. Recalling the arguments presented in §5.1.1, we conclude that bosonic
NCDD models admit two di↵erent types of large R behaviors whenever N > 0.

The large R regime of the pseudoenergy ✏(✓) for the primary branch is as expected
and it is easily accessed numerically, however for the secondary branch it is more
involved to compute it. By increasing the value of R, eventually we reach a value
R

0 where the PALC method suddenly ceases to provide a real solution and reverts back
to the primary branch solution. Analyzing the behavior of ✏(✓) for complex values of
✓, we verified that a pair of complex conjugate zeros of z(✓) = 1� e

�✏(✓) is approaching
the real axis and causing the numerical instability. In principle it is possible to refine
the numerical methods so as to obtain solutions for R > R

0. However, it is not clear
at the moment whether or not those singularities of L(✓) ever cross the real axis. In
case they do, an analysis similar to the one performed in [33] for the excited state TBA
could be carried out. We leave the analysis of the large R behavior of the secondary
branch in bosonic models for a future study.

The behavior of the models for R close to R⇤ is illustrated in Figure 9 by the
L(✓) function for a 2CDD model of type (d). The qualitative picture is similar to
the fermionic case, i.e. the function L(✓) for the secondary branch solution is greater
everywhere than the one for the primary branch and the two merge as the critical
point is approached. We conclude this subsection by showing in Figure 8 the smooth
dependence of x⇤ on the model parameters and in particular in the limit � ! ⇡/2.
In addition, notice that the bosonic curve is always above of the fermionic curve for

21Notice that limu!0 Log i sinu�sinh ✓
i sinu�sinh ✓ = i⇡ sign(✓)
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Solution: map between fermionic and bosonic TBA equations

If: ✏(✓)

<latexit sha1_base64="MmUi7ekvZnWyHvoZKO/iFvkd6VY="></latexit>

is a solution of the bosonic TBA equation 

is a solution of the fermionic TBA equation 

Conclusion: 



Conclusions and Open Problems 

Physics of the secondary branch 

For 

CDD’s with entire part as well; massless cases
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finite N , the theory develops the Hagedorn singularity corresponding to a density of
high-energy states much greater than what is allowed in a Wilsonian QFT. Although
we demonstrated this in a limited set of examples – the 2CDD deformations of the free
S-matrix with both fermionic and bosonic statistics and the 1CDD deformations of the
free boson S-matrix – this result likely extends to more general NCDD deformations, at
least for massive theories involving only one kind of particles. In fact the case N = 1,
a model known as Elliptic sinh-Gordon, is shown to display the same behavior as the
ones studied here [34]. We note that this behavior is qualitatively the same as the
one encountered under the “TTbar proper” deformation (1.1) of a generic local QFT.
Moreover, the singularity of E(R) at the Hagedorn point R⇤ is a square-root branching
point, exactly as in the TTbar deformations with negative ↵. From a formal point of
view, this nature of the singularity is not entirely unexpected. Indeed, the character
of the singularity relates to the rate of approach of the Hagedorn asymptotic (2.9) at
high energy E ! 1. Assume that the approach is power-like23

S(E) = R⇤ E �
aL

+1

E
+ · · · (6.1)

where  is some positive number, L is the spatial size of the system which is assumed
to be asymptotically large, and the dots represent yet higher negative powers of E . The
dependence on L of the subleading term reflects the extensive nature of the entropy,
which must behave as L�(E/L) in the limit L ! 1, with the intensive quantity - the
entropy density � - depending on the energy density E/L. Inspection of (6.1) reveals the
mass dimension of the coe�cient a to be a ⇠ [mass]2+1. Having in mind that all the
deformation parameters ↵s in (1.4) have even integer dimensions, one could expect that
the exponent 2+1 is an integer. The lowest positive  consistent with this assumption
is  = 1, and then (6.1) leads exactly to the square-root singularity of E(R). Still, the
physics behind this simple character of the singularity appears mysterious. Analytic
continuation of E(R) below R⇤ returns complex values of E. This likely signals an
instability of the ground state at R < R⇤ against some sort of decay. If so, what is the
product(s) of the decay? Usually in a theory with finite range of interaction the decay
of the unstable ground state goes through the process of nucleation, as in the “false
vacuum” decay studied in [36, 37]. However such a decay would imply a much weaker –
and analytically more complicated – singularity at R⇤. Therefore the simple algebraic
character of the actual singularity appears puzzling. A di↵erent, but possibly related,
question is the physical interpretation of the secondary branch of E(R) discovered in
§5.

An even more general question concerns the relation between the S-matrix and
the underlying local structure. Suppose we are given an S-matrix, i.e. a collection of

23It is interesting to compare this assumption with the analysis of thermodynamic stability in [35].
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complex energy

Physical conditions for formation of the singularity 

Analytical proofs: square root behaviour, independence on theta, size of the 
negative interval, more CDDs     



Thank you very much!


